Visual Meditations on House Prices 2020 Edition

Reflecting on recent house price trends with variations on a theme

VISUAL MEDITATIONS are the analysis of repeated graphs of the same data with variations on a graphical theme. When altering the mapping of data to aesthetics sometimes interesting patterns emerge. I find it a useful practice. I made a series of these a few years ago with different charts. The chart images have been lost to past blog migrations, but the code should still work.

In this post, I want to consider several alternative ways to visualize house prices. We’ll use the Freddie Mac House Price Index and visualize the data with R (code at the bottom).

Throughout we’ll be looking at the annualized rate of change over 3-month sliding windows. For example, the latest data is through October 2020, so the rate of change we’re looking at is from July to October (growth in August, September, October).

The graph below shows that after slowing in spring, US house prices accelerated to a nearly 20 percent annualized growth rate over the past three months.

US House Price growth

R Code

R code for the plots above can be found below.

# replace with path to save your files
mydir <- FILEPATH


#####################################################################################
# load libraries----
#####################################################################################
library(darklyplot) # for theme_dark2() function
# see http://lenkiefer.com/2020/07/03/using-darklyplot/ 

library(gganimate)
library(data.table)
library(tidyverse)
library(geofacet)

#####################################################################################
# color palette ----
#####################################################################################
# a color function for rainbow palette
# Function for colors ----
# adapted from https://drsimonj.svbtle.com/creating-corporate-colour-palettes-for-ggplot2
#####################################################################################
## Make Color Scale ----  ##
#####################################################################################
my_colors <- c(
  "green"      = rgb(103,180,75, maxColorValue = 256),
  "green2"      = rgb(147,198,44, maxColorValue = 256),
  "lightblue"  =  rgb(9, 177,240, maxColorValue = 256),
  "lightblue2" = rgb(173,216,230, maxColorValue = 256),
  'blue'       = "#00aedb",
  'red'        = "#d11141",
  'orange'     = "#f37735",
  'yellow'     = "#ffc425",
  'gold'       = "#FFD700",
  'light grey' = "#cccccc",
  'purple'     = "#551A8B",
  'dark grey'  = "#8c8c8c")


my_cols <- function(...) {
  cols <- c(...)
  if (is.null(cols))
    return (my_colors)
  my_colors[cols]
}


my_palettes <- list(
  `main`  = my_cols("blue", "green", "yellow"),
  `cool`  = my_cols("blue", "green"),
  `cool2hot` = my_cols("lightblue2","lightblue", "blue","green", "green2","yellow","gold", "orange", "red"),
  `hot`   = my_cols("yellow", "orange", "red"),
  `mixed` = my_cols("lightblue", "green", "yellow", "orange", "red"),
  `mixed2` = my_cols("lightblue2","lightblue", "green", "green2","yellow","gold", "orange", "red"),
  `mixed3` = my_cols("lightblue2","lightblue", "green", "yellow","gold", "orange", "red"),
  `mixed4` = my_cols("lightblue2","lightblue", "green", "green2","yellow","gold", "orange", "red","purple"),
  `mixed5` = my_cols("lightblue","green", "green2","yellow","gold", "orange", "red","purple","blue"),
  `mixed6` = my_cols("green", "gold", "orange", "red","purple","blue"),
  `grey`  = my_cols("light grey", "dark grey")
)


my_pal <- function(palette = "main", reverse = FALSE, ...) {
  pal <- my_palettes[[palette]]
  
  if (reverse) pal <- rev(pal)
  
  colorRampPalette(pal, ...)
}


scale_color_mycol <- function(palette = "main", discrete = TRUE, reverse = FALSE, ...) {
  pal <- my_pal(palette = palette, reverse = reverse)
  
  if (discrete) {
    discrete_scale("colour", paste0("my_", palette), palette = pal, ...)
  } else {
    scale_color_gradientn(colours = pal(256), ...)
  }
}



scale_fill_mycol <- function(palette = "main", discrete = TRUE, reverse = FALSE, ...) {
  pal <- my_pal(palette = palette, reverse = reverse)
  
  if (discrete) {
    discrete_scale("fill", paste0("my_", palette), palette = pal, ...)
  } else {
    scale_fill_gradientn(colours = pal(256), ...)
  }
}


#####################################################################################
# data stuff ----
#####################################################################################
dt <- fread("http://www.freddiemac.com/fmac-resources/research/docs/fmhpi_master_file.csv")

#####################################################################################
# define variables ----
#####################################################################################
dt <- data.table(dt)[,":="(hpa12=Index_SA/shift(Index_SA,12)-1,
                           hpa3 = (Index_SA/shift(Index_SA,3))**4 -1 ),
                     .(GEO_Type,GEO_Name)
                     ]

dt[,date:=as.Date(ISOdate(Year,Month,15))]
dt[, hpa3_lag3:=shift(hpa3,3), by=.(GEO_Type,GEO_Name)]
dts <- dt[Year>2017 & GEO_Type=="State",]
yy <- 2020
mm <- 10

#####################################################################################
# plot 1 bar chart ----
#####################################################################################

ggplot(data=dt[GEO_Name=="USA" & Year>2017,]
       , aes(y=hpa3,x=date,color=hpa3,fill=hpa3))+
  geom_col(alpha=0.5)+
  geom_path()+
  geom_point()+
  geom_text(data= .%>% filter(date==max(date)),
            nudge_y=.01,fontface="bold",size=4,
            aes(label=GEO_Name))+
  scale_y_continuous(labels=scales::percent_format(accuracy=1),
                     #limits=c(-0.1,.4),breaks=seq(-0.1,.4,.1),
                     position="right")+
  labs(x="",
       y="3-month annualized % change",
       title="House Price Growth (USA)",
       caption="@lenkiefer Source: Freddie Mac House Price Index, seasonally adjusted",
       subtitle=paste0(format(min(dt$date),"%b %Y"),"-",format(max(dt$date),"%b %Y")))+
  theme_dark2(base_family="Arial",base_size=18)+
  theme(legend.position="top",legend.direction = "horizontal",
        legend.key.width=unit(2,"cm"),
        plot.title=element_text(size=rel(1.75),face="bold"),
        #axis.text.y=element_blank(),
        #axis.ticks.y=element_blank()
        #,panel.grid.major.y=element_blank()
  )+
  scale_color_mycol(palette="cool2hot",
                    discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")+
  scale_fill_mycol(palette="cool2hot",
                   discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")

ggsave(paste0(mydir,"fmhpi_usa_",yy,mm,".png"), height=5,width=8,scale=2)

#####################################################################################
# plot 2 geo facet bar chart ----
#####################################################################################

ggplot(data=dts, aes(y=hpa3, x=date, 
                     group=GEO_Name, fill=hpa3))+
  geom_col()+
  scale_y_continuous(labels=scales::percent_format(accuracy=1),
                     limits=c(-0.1,.4),breaks=seq(-0.1,.4,.1))+
  labs(y="",
       x="3-month annualized % change",
       title="House Price Growth by State",
       caption="@lenkiefer Source: Freddie Mac House Price Index, seasonally adjusted",
       subtitle=paste0(format(min(dts$date),"%b %Y"), "-",format(max(dts$date),"%b %Y")))+
  theme_dark2(base_family="Arial",base_size=18)+
  theme(legend.position="top",legend.direction = "horizontal",
        legend.key.width=unit(2,"cm"),
        plot.title=element_text(size=rel(1.75),face="bold")
        ,panel.grid.minor.y=element_blank()
        ,panel.grid.minor.x=element_blank()
  )+
  scale_fill_mycol(palette="cool2hot",
                   limits=c(-0.05,.38),
                   discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")+
  facet_geo(~GEO_Name)

ggsave(paste0(mydir,"fmhpi_state_",yy,mm,"_geofacet.png"), height=8,width=14,scale=2)



#####################################################################################
# plot 3 segment chart ----
#####################################################################################


myf <- function(yy=2020, mm=4){
  
  dts2 <- dts[Year==yy & Month==mm,]
  
  ggplot(data=dts2, aes(x=hpa3, y=GEO_Name, label=GEO_Name, color=hpa3))+
    geom_point()+
    geom_segment(aes(xend=hpa3_lag3, yend=GEO_Name))+
    geom_label(size=4,fontface="bold")+
    scale_x_continuous(labels=scales::percent_format(accuracy=1),
                       limits=c(-0.1,.4),breaks=seq(-0.1,.4,.1))+
    labs(y="",
         x="3-month annualized % change, line extends to 3-months prior",
         title="House Price Growth by State",
         caption="@lenkiefer Source: Freddie Mac House Price Index, seasonally adjusted",
         subtitle=format(max(dts2$date),"%b %Y"))+
    theme_dark2(base_family="Arial",base_size=18)+
    theme(legend.position="top",legend.direction = "horizontal",
          legend.key.width=unit(2,"cm"),
          plot.title=element_text(size=rel(1.75),face="bold"),
          axis.text.y=element_blank(),
          axis.ticks.y=element_blank(),
          panel.grid.major.y=element_blank())+
    scale_color_mycol(palette="cool2hot",
                      limits=c(-0.05,.38),
                      discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")
  
  ggsave(paste0(mydir,"fmhpi_state_",yy,mm,".png"), height=14,width=14,scale=1)
  
  
}


myf(2020,2)
myf(2020,5)
myf(2020,10)

#####################################################################################
# plot 4 animated segment chart ----
#####################################################################################

a <- 
  ggplot(data=dts, aes(x=hpa3, y=GEO_Name, label=GEO_Name, color=hpa3))+
  geom_point()+
  geom_segment(aes(xend=hpa3_lag3, yend=GEO_Name))+
  geom_label(size=4,fontface="bold")+
  scale_x_continuous(labels=scales::percent_format(accuracy=1),
                     limits=c(-0.1,.4),breaks=seq(-0.1,.4,.1))+
  transition_reveal(date)+
  labs(y="",
       x="3-month annualized % change, line extends to 3-months prior",
       title="House Price Growth by State",
       caption="@lenkiefer Source: Freddie Mac House Price Index, seasonally adjusted",
       subtitle=paste0('{format(frame_along,"%b %Y")}'))+
  theme_dark2(base_family="Arial",base_size=18)+
  theme(legend.position="top",legend.direction = "horizontal",
        legend.key.width=unit(2,"cm"),
        plot.title=element_text(size=rel(1.75),face="bold"),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank(),
        panel.grid.major.y=element_blank())+
  scale_color_mycol(palette="cool2hot",discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")

# test
# animate(a,nframes=10, end_pause=2, width=740,height=1000,fps=15)
animate(a,nframes=184, end_pause=30, width=740,height=1000,fps=15)

gganimate::anim_save(paste0(mydir,"fmhpi_dots_nov2020v5.gif"))


#####################################################################################
# plot 4 animated bar chart ----
#####################################################################################

dts3 <- dt[Year>2017 & (GEO_Type=="State"| GEO_Type=="US"),]
dts3$statef <- factor(dts3$GEO_Name,levels=dts3[date==max(date) ][order(hpa3),]$GEO_Name)

ab <-
  ggplot(data=dts3[GEO_Name %in% c("ID","USA","HI","xVT")]
         , aes(y=hpa3,x=date,color=hpa3,fill=hpa3))+
  geom_col(alpha=0.5)+
  geom_path()+
  geom_point()+
  geom_text(data= .%>% filter(date==max(date)),
            nudge_y=.02,fontface="bold",
            aes(label=GEO_Name))+
  scale_y_continuous(labels=scales::percent_format(accuracy=1),
                     limits=c(-0.1,.4),breaks=seq(-0.1,.4,.1),
                     position="right")+
  labs(x="",
       y="3-month annualized % change",
       title="House Price Growth by State",
       caption="@lenkiefer Source: Freddie Mac House Price Index, seasonally adjusted",
       subtitle="{closest_state}")+
  theme_dark2(base_family="Arial",base_size=18)+
  theme(legend.position="top",legend.direction = "horizontal",
        legend.key.width=unit(2,"cm"),
        plot.title=element_text(size=rel(1.75),face="bold")
        )+
  scale_color_mycol(palette="cool2hot",
                    discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")+
  scale_fill_mycol(palette="cool2hot",
                   discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")


animate(ab+transition_states(GEO_Name),
        nframes=30, end_pause=2, width=740,height=500)

gganimate::anim_save(paste0(mydir,"fmhpi_bars_nov2020.gif"))


ac <-
  
  ggplot(data=dts3
         , aes(y=hpa3,x=date,color=hpa3,fill=hpa3))+
  geom_col(alpha=0.5)+
  geom_path()+
  geom_point()+
  geom_text(data= .%>% filter(date==max(date)),
            nudge_y=.02,fontface="bold",
            aes(label=GEO_Name))+
  scale_y_continuous(labels=scales::percent_format(accuracy=1),
                     limits=c(-0.1,.4),breaks=seq(-0.1,.4,.1),
                     position="right")+
  labs(x="",
       y="3-month annualized % change",
       title="House Price Growth by State",
       caption="@lenkiefer Source: Freddie Mac House Price Index, seasonally adjusted",
       subtitle="{closest_state}")+
  theme_dark2(base_family="Arial",base_size=18)+
  theme(legend.position="top",legend.direction = "horizontal",
        legend.key.width=unit(2,"cm"),
        plot.title=element_text(size=rel(1.75),face="bold")
        )+
  scale_color_mycol(palette="cool2hot",
                    discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")+
  scale_fill_mycol(palette="cool2hot",
                   discrete=FALSE,label=scales::percent,name="3-month growth (annualized rate)")


animate(ac+transition_states(statef),
        nframes=176*3, end_pause=20, width=740,height=500)

gganimate::anim_save(paste0(mydir,"fmhpi_bars_nov2020_allv2.gif"))

 Share!