Powder blue charts

I have been hitting the circuit for a lot of virtual talks and my charts have been wearing their road alternative powder blues.

Yesterday I shared with you observations on the economy, which form the core of many of my recent economic outlook talks. In that article I used some charts with alternative formatting. No not spooky, but a blue theme kind of like those alternative road uniforms some sportsball teams wear.

Here, I will share with you the R code for these delicious plots.

Setup

First we’ll need to set up our chart theme, tweak some ggplot2 defaults and load some libraries.

##############################################################
# load libraries ----
##############################################################
library(tidyverse)
library(lubridate)
library(ggridges)
library(fredr)
library(extrafont)
extrafont::loadfonts(device="win")

Chart theme

We’ll also need to set up a custom ggplot2 theme. I’m building off of theme_minimal(). I pass parameters to theme_miniaml via ... which will allow me to change the theme font or make other adjustments.

For this chart theme, I chose a background lightskyblue1, with white grid lines and gray20 text. I also will change the font to Gill Sans MT and I’ll also override the default ggplot2 line and rect color/fill parameters as deeppink.

R code for chart theme

##############################################################
# set up theme ----
##############################################################
theme_len <-  function(...){
  
  theme_minimal(...)+
    theme(legend.position="top",
          panel.grid.minor=element_blank(),
          panel.grid.major=element_line(color="white"),
          plot.title=element_text(face="bold",color="gray20"),
          plot.subtitle=element_text(face="italic",color="gray20"),
          plot.caption=element_text(hjust=0,color="gray20"),
          legend.direction="horizontal",
          axis.text=element_text(color="white"),
          axis.title=element_text(color="gray20"),
          plot.backgroun=element_rect(fill="lightskyblue1"),
          panel.border=element_rect(fill=NA,color=NA),
          plot.margin=margin(1,1,1,1,"cm"),
          legend.key.width=unit(2,"cm")
          )
  
}

##############################################################
# update default ggplot2 line, rect colors/fill ----
##############################################################
update_geom_defaults("line",list(colour="deeppink"))
update_geom_defaults("rect",list(fill="deeppink",colour="deeppink"))

Now we can load data and make some plots.

Get data

I’m going to use data from FRED. You’ll need to set up your API key as I described in my post Visualizing consumer price inflation and mortgage rates

Mortgage rate line chart

For the line chart I added an additional embellishment. I added a thicker second, third, and fourth lines with white color and decreasing transparency. This helps the line stand out from the background.

R code for mortgage rate plot

##############################################################
# set up fredr and load data ----
##############################################################
fredr_set_key("YOUR_API_KEY_FROM_FRED")

# load data
df <- 
  fredr(series_id = "MORTGAGE30US",
        observation_start = as.Date("1971-04-01")
  ) 

##############################################################
# line plot  ----
##############################################################
ggplot(data=filter(dfm,date>="2005-01-01"), aes(x=date,y=value))+
  geom_line(size=2,color="white",alpha=0.75)+
  geom_line(size=4,color="white",alpha=0.25)+
  geom_line(size=5,color="white",alpha=0.1)+
  geom_line(size=1.3)+
  theme_len(base_family="Gill Sans MT",base_size=24,base_line_size=0.65)+
  scale_y_continuous(position="right")+
  geom_point(data=.%>% tail(1),size=4,alpha=0.5,color="deeppink")+
  geom_hline(data=.%>% tail(1),linetype=2,aes(yintercept=value),alpha=1,color="deeppink")+
  labs(x="",y="",subtitle="U.S. Weekly average 30-year fixed mortgage rate (percent)",
       title="Mortgage Rate Trends",
       caption="@lenkiefer Source: Freddie Mac Primary Mortgage Market Survey through October 29, 2020")

Time series chart of US 30-year mortgage rates

New home sales

R code for new home sales plot

##############################################################
# load data ----
##############################################################

df_nhs <- 
  fredr(series_id = "HSN1FNSA",
        observation_start = as.Date("2000-01-01")
  ) 

df_nhs <- mutate(df_nhs, yearf=fct_reorder(factor(year(date)), -year(date)),
                 mname=factor(month.abb[month(date)],levels=month.abb))



##############################################################
# tile plot  ----
##############################################################
ggplot(data=filter(df_nhs,year(date)>2005), aes(x=mname,y=yearf, fill=value,label=value))+
  geom_tile()+
  geom_tile(color="white",size=2.5)+
  geom_tile(color="black",size=1.2,fill=NA)+
  geom_text(color="white",family="Gill Sans MT",fontface="bold",size=5)+
  scale_fill_gradient(name="New home sales\n(1000s, NSA) ",low="dodgerblue",high="deeppink")+
  theme_len(base_family="Gill Sans MT",base_size=24,base_line_size=0.65)+
  theme(legend.position="right",legend.direction="vertical",
        legend.key.height=unit(2,"cm"))+
  labs(x="",y="",title="New Home Sales by Month",
       caption='@lenkiefer Source: US Census Bureau and Department of Housing and Urban Development')

Tile plot of new home sales by month (NSA)

GDP density plot

Finally here’s a power blue remix of my Chart Style 1979 plot for US Real GDP growth.

R code for GDP plot

##############################################################
# load data ----
##############################################################
d <-
  fredr(series_id = "A191RL1Q225SBEA",
        observation_start = as.Date("1940-01-01"))  %>%
  # rename value as price
  rename(price = value)



d <- mutate(d, decade=case_when(year(date)<1951~"1947-1950",
                                year(date)<1961~"1951-1960",
                                year(date)<1971~"1961-1970",
                                year(date)<1981~"1971-1980",
                                year(date)<1991~"1981-1990",
                                year(date)<2001~"1991-2000",
                                year(date)<2011~"2001-2010",
                                T ~"2011~2020"
                                ))

##############################################################
# density  ----
##############################################################

ggplot(data=d, aes(x=price,y=fct_reorder(decade,-year(date))))+
  geom_density_ridges(color="white",fill="deeppink",bandwidth=1,
                      point_color="dodgerblue",
                      jittered_points=TRUE,position="raincloud",alpha=0.75,size=0.85,scale=3
                      )+
  scale_x_continuous(breaks=seq(-50,50,5))+
  theme_len(base_family="Gill Sans MT",base_size=24)+
  theme(panel.grid.major.x=element_blank())+
  labs(x="GDP Growth (annualized %)",
       y="",
       caption="@lenkiefer Source: U.S. Bureau of Economic Analysis",
       title="Distribution over quarterly growth rates of US Real GDP",
       subtitle="Curves are densities fit to quarterly observations for each decade, dots individual quarters")

Distribution of US real GDP growth by decade

Just for fun, and all of this is fun right?, we can animate a time series to show how extreme the recent GDP growth has been. The y axis in a normal chart might get broken, but we can add an elastic axis with gganimate::view_follow.

R code for animation

# need gganimate for the animation
library(gganimate)
##############################################################
# density  ----
##############################################################
d <- 
  d %>%
  mutate(id=row_number()) %>%
  mutate(did=case_when(year(date)<2020~0,
                       T~250)) %>%
  mutate(ind2=cumsum(did))

a <- 
ggplot(data=d, aes(x=date,y=price))+geom_line(size=1.05)+
  geom_point(data= .%>% filter(date>="2020-01-01"),size=4,alpha=0.25,color="deeppink")+ 
  theme_len(base_family="Gill Sans MT",base_size=24,base_line_size=0.65)+
  scale_y_continuous(position="right",breaks=seq(-100,100,5))+
  transition_reveal(ind2)+view_follow()+
  labs(x="date (quarterly)",y="",title="US Real GDP Growth Rate (%, SAAR)",
       caption="@lenkiefer Source: BEA")

animate(a,end_pause=10,height=700,width=1500)

Animated times series of US Real GDP growth

It might be a little much to have this theme all the time, but it can be a nice alternative. Plus, it might help my jersey sales.

 Share!