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Abstract

This paper identifies novel instruments for house prices and foreclosure rates, and use Dy-

namic Spatial Simultaneous Equation system (DSSES) to investigate the causal impact of each

variables. Our results show that there is an economically significant impact of foreclosure rates

on house prices and vice versa. Shocks to the foreclosure rate in one state not only impact

house prices in that state, but also the foreclosure rate and house prices in nearby states, and

ripple across the country. When it comes to the housing market, what happens in Vegas doesn’t

always stay in Vegas. We estimate that a one standard deviation foreclosure shock leads to a 2

percent decline in real house prices over the long run. These results provide evidence that could

be useful for policymakers evaluating the effectiveness of foreclosure mitigation programs at a

national level.
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1 Introduction

In the aftermath of the global financial crisis, the U.S. housing market experienced its worst years

since the Great Depression. State average home prices declined by as much as 30 percent year-over-

year and foreclosure start rates rose from an average under 0.5 percentage points prior to the crisis

to a high of over 3 percentage points in Nevada. The U.S. government took unprecedented steps

to stabilize the housing market and the macroeconomy. Besides the quantitative easing, Congress

passed the Housing and Economic Recovery Act of 2008 (HERA), and Obama Administration

launched the Home Affordable Refinance Program (HARP) and Home Affordable Modification

Program (HAMP).1

These government programs were built based on the belief that subsidizing the housing market

would help stabilize the U.S. housing market at large and that reducing foreclosures will help to

stabilize house prices. However, empirical evidence to date on this question is limited with respect

to the magnitude of the dynamic relationship between house prices and foreclosures. Although

it is widely accepted in the literature that foreclosures influence house prices mostly through two

channels: the disamenity effect of foreclosed properties, and the fire sale-induced supply effect, few

studies focus on quantifying the aggregate effect of foreclosures on house prices in a macro setting.

We find two relevant studies examining the impact of foreclosures on house prices at the state

level. However, the findings from these two studies differ in the estimate magnitude of foreclosure

rates on house prices. Mian et al., 2015 (referred to as MST thereafter) find foreclosures lead to a

large decline in house prices during the foreclosure peak following the recent crisis. Specifically, a

4.3 percentage points of increase in foreclosure rate (i.e., a one standard deviation of foreclosures

per homeowner during the period of 2008-2009) leads to a 8% to 12% relative drop in house price

growth over a nine-quarters time horizon between 2007Q4 and 2010Q1. Calomiris et al., 2013

(referred to as CLM thereafter) find a much smaller impact of foreclosures on house prices based

on their PVAR results using data from 1981 through 2009: a foreclosure shock that results in a

two-year increase in foreclosure rate of 4.3 percentage points leads to a nine-quarter cumulative

decline of house prices of 2.7%. CLM compare the long-term (over 6 years) impact of prices on

1The Federal Reserve purchased approximately $1.8 trillion of longer-term agency Mortgage Backed Securities

and agency debt to help lower mortgage interest rates. Congress passed HERA to appropriate considerable funds

to help stabilize the US housing market including substantial tax credits to first time home buyers which were later

extended to include all home buyers. HERA also initiated the Neighborhood Stabilization Program (NSP) to stabilize

communities that suffered from foreclosures and abandonment, which was later renewed by American Recovery and

Reinvestment Act of 2009 (ARRA). In early 2009 the Obama Administration launched the Making Home Affordable

program that was aimed to avoid foreclosures by having Freddie Mac and Fannie Mae refinance or modify mortgages

so that homeowners can avoid delinquency and foreclosure - HARP and HAMP. Later, the Federal Housing Finance

Agency (FHFA), which oversees Freddie Mac and Fannie Mae, extended the deadline of HARP to the year end of

2018, and HAMP to the end of 2016 with a similar program (Flex Modification) following on the heels of the expiring

HAMP.
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foreclosures against that of foreclosures on prices and find that price shocks are 79% larger than

foreclosure shocks. Based on the dominant effect coming from price shocks instead foreclosure

shocks, CLM also suggest that the entire effect of foreclosures on house prices can be explained by

the firesale-induced increase of supply. We note that although the models in both MST and CLM

allow for the interactions between house prices and foreclosure, they isolate each state and restrict

interactions within states. However, if house prices or foreclosures are spatially correlated, such

restrictions ignore the amplification due to spillover effects and therefore underestimate the impact

of foreclosure rates on house and vice versa.

In this paper, we provide causal evidence on house price and foreclosure under a dynamic

panel framework - the Dynamic Spatial Simultaneous Equations System (DSSES). Our structural

approach allows for spatial interaction and joint movement of house prices and foreclosures. The

reinforcement between the spatial spillover mechanism and the joint movement behavior provides an

amplification channel for the transmission of a shock through both the time and space dimensions.

The ideal instruments that help to disentangle the causal effect between house prices and fore-

closure are those correlated with only one but not both of them. In this paper, we introduce two

novel instruments meeting such criteria: the adjustable rate mortgages (ARMs) reset rate and the

change in the natural population growth rate.

The ARM reset rate is defined as the proportion of mortgages within a state that that experience

a payment shock as adjustable rate mortgages reach the expiration of their introductory rate

and encounter an upward interest rate reset.2 This indicator serves as an instrument for the

foreclosure rate. Higher monthly payments resulting from an ARM interest rate can lead to more

foreclosures. Financial institution regulators’ interagency policies, such as the OCC Bulletin 2007-

14,3 and former Chair of the Federal Deposit Insurance Corporation, Sheila Bair’s Congressional

testimony 4 concern the negative impact of ARM reset and encouraged mortgage services to take

advantage various government programs and work constructively with borrowers subject to ARM

reset risk. The high correlation of foreclosures and payment shock suggests ARM reset as a natural

instrument for foreclosures in studying the causal effect of foreclosures and house prices. A reset

2We found two empirical papers utilizing a similar concept in identifying the linkage between foreclosures and

house prices. Both Gupta, 2018 and Makridis and Ohlrogge, 2018 approach the causal effect measurement issue

from a micro standpoint by exploiting the loan-level interest rate variation due to an ARM reset in their two stage

estimations. Our work differs from these two studies in the way that our ARM reset instrument measures the

proportion of adjustable rate mortgages within a state that experience an upward change of their payment due to

ARM reset.
3OCC Bulletin 2007-14, Statement on Working with Mortgage Borrowers, https://www2.occ.gov/news-

issuances/bulletins/2007/bulletin-2007-14.html .
4Statement of Sheila C. Bair, Chairman, Federal Deposit Insurance Corporation on Accelerating Loan

Modifications, Improving Foreclosure Prevention and Enhancing Enforcement before the Financial Services

Committee; U.S. House Of Representatives; 2128 Rayburn House Office Building December 6, 2007,

https://www.fdic.gov/news/news/speeches/archives/2007/chairman/spdec0607.html .
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of an ARM is determined by its contractual terms at the time of origination. For example, the

rate of a 3/27 ARM will be reset 3 years since its origination, and a 2/28 ARM will be reset 2

years since its origination. Also, whether the subsequent payment of an ARM after a reset will go

up or down is determined by the previous introductory rate, the prevailing market rate which the

mortgage is indexed to, and the margin specified in the mortgage contract. It is hard to expect

an ARM reset is correlated with current house price shocks, since the tenor of introductory rate is

usually selected by the borrower based on their forecast of their income change. It is also hard to

expect the subsequent payment after a reset will go up or down at the initiation of the contract,

unless we believe mortgage issuers can perfectly foresee mortgage rate paths.

To instrument houses prices, we use an indicator of housing demand: the change in the natural

population growth rate defined as the quarterly change in births minus deaths divided by the

population in the state. This indicator captures housing demand shocks through population growth

that is less likely to be correlated with house price shocks than the pure population growth rate.

The population growth rate in a state is affected by migration patterns, which themselves partially

reflect economic trends, especially job growth. While fertility and mortality are themselves affected

by economic conditions the impact is much smaller and with a delay thus we argue below that the

natural population growth is a good instrument for housing demand.

There are three sources of endogeneity in our DSSES: 1). the endogenous own time-lagged

effect after Helmert’s transformation;5 2). the endogenous joint movement of house price and

foreclosure; and 3). the endogenous spillover effect of home prices and foreclosures respectively. To

address these multiple sources of endogeneity residing in our model, we adapt the finite moments

instrument variable (FMIV) method designed for a single equation setting in Lee and Yu, 2014 to

our simultaneous equations system setup and apply Yang and Lee, 2018’s three stage least squares

(3SLS) estimator6 to handle the additional complication from our simultaneous equation system.

Each of our structural equations in the simultaneous equations system satisfies the sufficient and

necessary rank and order conditions specified in Yang and Lee, 2018’s Proposition 1,7 suggesting

5To take care of location and time fixed-effects in a dynamic panel model - the dependent variable is a function

of its own time-lagged term, we adopt Helmert’s transformation for all the variables in both sides of our equation.

The transformed own time-lagged term becomes correlated with the residual and thus can no longer be treated as a

pre-determined variable. See Section 3 for more details.
6The consistency of the quasi maximum likelihood method in Yang and Lee, 2018 relies on the assumption of large

T to avoid handling the initial observation problem, and its asymptotic distribution depends on the growth rate of

N and T (i.e., (N− 1)/T3 → 0). Because the T in our empirical analysis is small relatively to N, we choose the 3SLS

over the QML for this paper.
7Yang and Lee, 2018 articulate the sufficient and necessary conditions for identifying the coefficients of each

structural equation in their Proposition 1. The rank condition requires the rank of a matrix representing all exclusive

coefficient restrictions for the given equation to be equal to the total number of equations in the system minus 1.

And the order condition requires that the number of all the excluded parameters of the given equation is no less than

the total number of equations in the system minus 1. It is worth noting, though spatial lag and FOD-transformed

4



all the structural parameters in our system are identifiable. Our estimated results also meet their

stable condition,8 indicating that our model is stable in both space and time dimensions. This

finite moments IV-based estimator allows us to arrive at a consistent estimator in the presence of

multiple sources of endogeneity.

Our estimated result of a statistically significant and economically meaningful foreclosure exter-

nality on house price when the multi-dimensional endogeneity issues are not adequately controlled.

Shocks to the foreclosure rate in one state not only impacts house prices in that state, but also

the foreclosure rate and house prices in nearby states. When it comes to the housing market, what

happens in Vegas doesn’t always stay in Vegas. Our DSSES model estimation results show that

a one standard deviation of foreclosure shock leads to a short-run real house price decline of 1.6

percent and a 2 percent decline in real house prices over the long run. A one standard deviation

shock to real house prices lowers the foreclosure rate 13 percent in the short run. We also find

significant spatial spillovers in both house prices and foreclosure rates across states. For example,

four quarters after a one standard deviation shock to Nevada’s foreclosure rate, real house prices

in California experience a cumulative decline of 1 percent.

2 Literature Review

This paper relates to several streams of literature. First, we contribute to the literature of spatial

spillovers. Neighborhood spatial spillovers have been explored extensively in the recent urban and

real estate economics literature. Nevertheless, most of this spillover studies focus on house price (see,

among others, Se Can and Megbolugbe, 1997; Basu and Thibodeau, 1998; Pace et al., 1998; LeSage

and Pace, 2004; Clauretie and Daneshvary, 2009; Kiefer, 2011). These studies suggest the existence

of spatial interdependence of house prices in a neighborhood. Anselin, 2008; Fingleton and Le Gallo,

2008 provide their justifications for the spatially correlated house prices, and refer to an omission of

spatially autocorrelated regressors, and displaced demand and supply effects. Omitted variable issue

is almost inevitable in modeling house price due to the uniqueness of location, which is an important

determinant of property value. If there exist some common characteristics in the neighborhood that

influence housing value, but omitted from the model specification (e.g., accessibility of shopping

centers/parks, exposure to traffic noise, major employment center, etc.), prices of nearby houses

tend to serve as proxies of these omitted neighborhood effects. The recognition of the proxy effect

own time lag are endogenous from a statistical perspective, it is appropriate to regard both of them as ”exogenous”

variables for the purpose of counting excluded variables in a structural model. Therefore, extending a first order

time lag equation as specified in Yang and Lee, 2018 to a more general specification as our DSSES with p time lags

(p > 2) will not change our identification conclusion.
8In order to have an nonexplosive system either in time and space, the aggregated effects of spatial spillovers,

serial correlations, and cross effects cannot be too large. More specifically, the sufficient (not necessary) condition

defined by Yang and Lee, 2018 requires the total effect to be less than 1 for row-normalized spatial weight matrices.
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has another piece of empirical evidence - residential appraisals often rely on sales comparables to

determine the value of a property in a housing transaction. The widely used Sales Comparison

Approach (SCA) method is an appraisal procedure that is essentially a weighted average of sales

comparables in the vicinity. The argument of displaced demand and supply effects is also intuitive.

High prices discourage demand. If the price in a local area is high, the quantity demanded there

should decrease, and thus demand from this location will be displaced into a nearby location

suggesting a positive relationship between the local demand and nearby prices. The same argument

holds for the supply function: a high price in a local area will attract the supply from nearby places

suggesting a negative relationship between the local supply and the nearby prices. In equilibrium

where demand equals supply, the displaced demand and supply effects translate into a positive

spatial relationship of nearby house prices.

Studies on spillovers of mortgage defaults and foreclosures are rather limited. The existing works

in this line of research show that the default risk of a borrower is affected by the household/loan

characteristics of surrounding properties (see, among others, Goodstein et al., 2011; Agarwal et al.,

2012; Zhu and Pace, 2014). However, the models considered in the aforementioned works have

not yet established a direct link connecting default decisions of neighboring homeowners to fully

capture the spillover effect of mortgage defaults, and thus underestimate the impact. Towe and

Lawley, 2013 establish the connection between a homeowner’s default decision and her observa-

tions of neighbors’ time-lagged default decisions and explain it as a result of social interaction

behaviors. Chomsisengphet et al., 2018 further this line of work by providing empirical evidence

of spatial spillovers in homeowners’ mortgage default decisions in forms of both time-lagged and

contemporaneous effects.

It is worth mentioning that the spillover literature discussed above emphasizes the spatial neigh-

borhood effect is a local phenomenon. The neighborhood of the spatial interactions among house

prices or foreclosures is usually defined as a planned community within a city (e.g, Clauretie and

Daneshvary, 2009), a county (e.g., Se Can and Megbolugbe, 1997; Towe and Lawley, 2013; Chom-

sisengphet et al., 2018; LeSage and Pace, 2004; Kiefer, 2011) or a Metropolitan Statistical Area

(e.g., Basu and Thibodeau, 1998). The “local” characteristic of price or foreclosure spillovers makes

sense because housing properties are closely tied to their locations. However, we are interested in

testing whether this type of local neighborhood effects appear in our aggregated state level data as

a collective outcome.

However, it is interesting to examine whether these local spillovers will be filtered out entirely

when data is aggregated to a higher geographic level. In other words, are these spatial spillover

effects still observable at the state level? Intuitively, the within-unit joint movement of house

prices and foreclosures reinforces each other (i.e., unit i’s house price move together with unit

i’s foreclosure) and helps fuel the ripple effects of house prices and foreclosures, and could result

in a nontrivial impact received by a spatial unit far from the origin of a shock. Meanwhile, the
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spatial spillover transmission mechanism provides an amplification channel for the price response

to a foreclosure shock within the same spatial unit such as a state.

By introducing the micro-based spillover literature to the limited studies on the quantification

of the causal effect between foreclosures and house prices at the state level, our results shed light

on the extent to which spatial spillovers impact the joint movement of house prices and foreclosures

and potentially motivate the wide range of federal programs targeting stressed borrowers.

In addition, our work contributes to a growing literature on the causal linkage between house

prices and foreclosures. Accurately measuring the price impact of foreclosures is not a simple task

due to the reverse causality issue - house price can affect foreclosure, and it is likely true vice

versa. Strong instruments as we propose in this paper - ARMs reset rate and change in the natural

population growth rate - are useful to overcome this identification difficulty.

The causality direction can move from house prices to foreclosures. Foster and Van Order,

1984’s option-based model suggests that a put option (i.e., mortgage default) is in the money when

house prices fall. Falling house prices shrink homeowners’ equity. For homeowners with thin equity

to start with (i.e., low or no down payment mortgages), a sharp price drop like what we have seen in

the recent crisis can easily push borrowers underwater (e.g., negative equity), which is a necessary

(but not sufficient) condition for mortgage default. While literature focusing on the default impact

of declining house prices is still immature (especially in terms of accurately quantifying the price

externality), the existing studies have suggested a significant role played by house price changes

on homeowners’ default decisions (e.g., among others, Bajari et al., 2008; Foote et al., 2008; Guiso

et al., 2013).

The opposite causality direction is equally plausible. Foreclosed properties are usually sold with

a foreclosure discount accounting for either the below average physical condition, or the stigma effect

- simply because these properties have been involved in foreclosure proceedings. The literature

has suggested a foreclosure discount rate of 20 percent or more (e.g., among others, Clauretie and

Daneshvary, 2009; Carroll et al., 1997; Harding et al., 2009; Campbell et al., 2011). Besides the self-

discount of foreclosed properties themselves, negative price impacts of these distressed properties

are found in forms of externality: through either a disamenity channel - deferred maintenance or

attracting crime due to vacancy; or a supply channel - foreclosed properties add to the local house

inventory available for sale. Both effects put downward pressure on nearby house prices.

A large literature focuses on disentangling these two types of underlying mechanisms as well

as examining the magnitude of the foreclosure externality on house prices. Recent studies have

particularly emphasized the importance of controlling for the reverse causality in order to accurately

measure the price impact of foreclosures. For example, to take care of the simultaneity issue,

Harding et al., 2009 adopt repeat sales approach, Campbell et al., 2011, and Hartley, 2014 use

a difference in difference identification strategy in their hedonic estimations, Mian et al., 2015

employ an instrument variable capturing the differences in state foreclosure laws (i.e., judicial vs.
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non-judicial), and Gerardi et al., 2015 include triple-interaction fixed effects (i.e., times of initial

and subsequent sales and geographic location) in their repeat sales specification. The consensus in

the literature suggests that the foreclosure spillovers on nearby house prices are less than 2 percent

after properly controlling for the simultaneity issue in the estimation procedure.9

These empirical studies have so far focused on “controlling” for the reverse causality of house

price on foreclosure by the inclusion and exclusion of variables representing housing quality and

housing supply. Though the potential of a simultaneous move of house price and foreclosure is widely

recognized, few studies have focused explicitly on modeling the co-movement pattern. The exception

is CLM. In their study, the simultaneous relationship between house prices and foreclosures is

examined and the magnitudes of price externality and foreclosure externality are compared. They

employ a 5-equation PVAR consisting of price appreciation and foreclosure rate in addition to

three macroeconomic indicators - growth rates of employment, permits, and home sales. Their

findings suggest that the causality indeed exists in both directions. However, the cumulative impact

(over six years) that prices have on foreclosures is 79% larger than the impact of foreclosures on

prices. As a result, the strong connection between house price and foreclosure mainly reflect the

house price impact on foreclosure activity rather than the other way around. By allowing for

spatial autocorrelation and contemporaneous interactions between house price and foreclosure, our

empirical results of long run analysis suggest the cumulative response to a standardized shock is

only 36% larger for house prices on foreclosure than for foreclosure on house prices, which stands

in contrast to CLM’s claim of 79%. A shock to the foreclosure equation in our estimated DSSES

that increases the foreclosure rate 1 standard deviation after eight quarters decreases real house

prices 7.9 percent over that same period, which is in line with MST’s findings of 8% to 12% over 9

quarters in response to a similar shock.

The rest of the paper is organized as follows. Section 3 presents two alternative econometric

specifications, the PVAR and the DSSES, and their estimation methodologies. Section 4 describes

the data and summary statistics and discusses our instrumental variables. Section 5 discusses our

empirical results. Section 6 concludes.

3 Econometric Model

In this section, we start with a Panel Vector Autoregression (PVAR) specification commonly

used in dynamic panel studies. Then we present a dynamic spatial simultaneous equations sys-

tem (DSSES). Our DSSES differs from the conventional panel VAR approaches of house price and

foreclosure panel data modeling in two ways: the simultaneous equations system setup allows for a

simultaneous-cross effect between house price and foreclosure; the spatial lags in the system intro-

9Due to its relatively small effect, we leave out the cross spillovers between house prices and foreclosures across

spatial units from our already complicated model specification.
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duce a contemporaneous-spillover effect of house price and foreclosure. The DSSES specification

emphasizes the amplification mechanism arising from the intertwined cross-effect dynamics and

spatial spillovers of house prices and foreclosures.

3.1 Panel VAR

As the way Canova and Ciccarelli, 2013 put it: ”PVARs have the same structure as VAR

models, in the sense that all variables are assumed to be endogenous and interdependent, but

a cross sectional dimension is added to the representation”. Our PVAR system consists of m

equations with house prices and foreclosures as two of the m endogenous variables. The model

also includes the individual time lags and location fixed effects, as well as the interaction of the

endogenous variables but with time lags - the time-lagged-cross effects. Let n denote the total

number of spatial units, and T denote the total number time periods, the PVAR system at time

period t(∀t = 1, 2, · · · , T − p) can be written as

Y∗n2(t) =

p∑
j=1

Y∗n2(t− j)Pj + d′ ⊗ ln + C+U∗n2(t), (1a)

and the lth equation (∀l = 1, 2, · · · ,m) in the system is expressed as,

y∗l,nm(t) =

p∑
j=1

Y∗nm(t− j)ρj,·l + dl ⊗ ln + c·l + u∗l,nm(t), (1b)

The dependent variable, Y∗nm(t) = [y∗1,nm(t), y∗2,nm(t), · · · , y∗m,nm(t)], with each column repre-

senting one endogenous variable (e.g., house prices, foreclosures, etc.), is an n×mmatrix. Similarly,

Y∗nm(t − j) = [y∗1,nm(t − j), y∗2,nm(t − j), · · · , y∗m,nm(t − j)] is an n ×m matrix representing the

time-lagged dependent variables to the jth order. U∗nm(t) = [u∗1,nm(t), u∗2,nm(t), · · · , u∗m,nm(t)]

is the disturbance term. We assume the errors are i.i.d. across space and time.10 Pj is a m ×m
matrix with the diagonal elements capturing the own time-lagged effect from j periods ago, and

the off-diagonal elements denoting the cross time-lagged effect from j periods ago. We use ρj,·l to

denote the lth column of Pj. C and d are, respectively, an n×m matrix of location fixed effects,11

and a m-dimensional column vector of intercepts, while ln is an n×1 vector of ones and ⊗ denotes

the kronecker product. c·l represents the lth column of C and dl is the lth element of d.

It is well known that, in a dynamic panel, the fixed effects estimator is not consistent because

they are correlated with the regressors due to lags of the dependent variables. We apply the forward

orthogonal difference (FOD) transformation (i.e., Helmert’s transformation) to each variable input

of Equation (1) to remove the fixed effects.12 The FOD transformation eliminates both the intercept

10PVAR estimation usually doesn’t require zero correlations across equations.
11Note, to avoid perfect collinearity, we impose a normalization condition of

∑n
i=1 c1,i = 0.

12See Appendix(A) for details of the operation of FOD.
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and location fixed effects from Equation (1) and reduced the total observation from mn(T − p) to

mn(T − p− 1), let T = T − p− 1 to simplify the notation, we now have

Ynm,T =

p∑
j=1

Y
(−j)
nm,TPj +Unm,T, (2)

where the superscript (−j) of Y
(−j)
nm,T indicates the value of the variable is lagged by j periods. To

consistently estimate Equation (2), restrictions are typically imposed on the coefficient matrices

Pjs to make the variance of Ynm,T bounded and to make sure that Pjs exists.

3.2 Dynamic Spatial Simultaneous Equations System

The previously described PVAR specification takes into account the interactions of house prices

and foreclosures, however, it imposes the cross effect happens with time lags. There are reasons to

believe, however, that this assumptions may be unrealistic. For example, if foreclosure rates respond

quickly to price changes, our house price measure and foreclosure measure may be simultaneously

determined. To allow for such possibilities, we need a system allowing for simultaneously determined

dependent variables - simultaneous-cross effect. We introduce a dynamic spatial simultaneous

equations system (DSSES) in this section to take care of not only the simultaneous-cross effect

but also the contemporaneous-spillover effect to fully account for the interactive dynamics of house

prices and foreclosures and their spatial transmission mechanism. More specifically, we adopt the

format of the widely used spatial autoregressive (SAR) model from Cliff and Ord, 1973 in each time

period and for the house price and foreclosure equations to capture the contemporaneous-spillover

effect. And these two panel SAR models are then built into a simultaneous equations system to

allow for the simultaneous-cross effect. The FOD transformed transformed functions consist of

both types of simultaneity and have the form of

y1,i(t) = −γ12y2,i(t)+ψ11WnY1,n2(t)+

p∑
j=1

ρj,11y1,i(t−j)+

p∑
j=1

ρj,12y2,i(t−j)+x′1,i(t)π·1+u1,i(t),

(3a)

and

y2,i(t) = −γ21y1,i(t)+ψ22WnY2,n2(t)+

p∑
j=1

ρj,22y2,i(t−j)+

p∑
j=1

ρj,21y1,i(t−j)+x′2,i(t)π·2+u2,i(t),

(3b)

for t = 1, 2, · · · ,T and i = 1, 2, · · · , n. In Equation (3a) (i.e., the house price equation), y1,i(t) is

the dependent variables, y1,i(t − j) is the own time lag to the jth order with a scalar coefficient

ρj,11 denoting the own time-lagged effect, y2,i(t − j) is the cross time lag to the jth order with

ρj,12 denoting the cross time-lagged effect, y2,i(t) represents the simultaneous-cross effect - the

effect from the dependent variable of Equation (3b), -γ12 and ψ11 denote the scalar coefficients,
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and x1,i(t) is the k1- dimensional vector of control variables with corresponding parameter vector

π·1.
13 The error terms across equations, u1,i(t) and u2,i(t) are no longer uncorrelated due to the

simultaneous-cross effect. We assume that the disturbances within each equation are still i.i.d.,

and the cross-equation disturbances follow a conventional correlation structure as

E(um,i(t)ul,j(s)) = {
0 if i 6= j or t 6= s

σml if i = j and t = s
.

Alternatively, after stacking observations over space is (∀i = 1, · · · , n), we can write both the house

price and foreclosure equations into a system as

Yn2(t)Γ = WnYn2(t)Ψ +

p∑
j=1

Yn2(t− j)Pj + Xn(t)Π +Un2(t), (4a)

and the lth equation (∀l = 1, 2) in the system is expressed as,

yl,n2(t) = −Yn2(t)γ·l +WnYn2(t)ψ·l +

p∑
j=1

Yn2(t− j)ρj,·l + Xl,n(t)π·l + ul,n2(t), (4b)

for t = 1, 2, ...,T. The dependent variable, Yn2(t) = [y1,n2(t), y2,n2(t)], with the first column,

y1,n2(t) = [y1,1(t), · · · , y1,n(t)]′ representing the FOD-transformed dependent variable in the house

price equation, and the second column, y2,n2(t) = [y2,1(t), · · · , y2,n(t)]′ representing the FOD-

transformed dependent variable in the foreclosure equation, is an n× 2 matrix. Γ is a 2× 2 matrix

with ones at the main diagonal, and its off-diagonal elements capture the simultaneous-cross effect

(in a negative term). Wn is a time-invariant n × n weight matrix of known constants,14 whose

ijth entry is wij, and Ψ is the corresponding spatial autoregressive coefficient matrix with zeros

off-diagonal elements. Xn(t) = X1,n(t)∪X2,n(t), is the FOD-transformed exogenous variable with

an dimension of n × k (with x variables appearing in both equations counted for once only to

avoid perfect multicollinearity, so k 6 (k1 + k2)), and Un2(t) = [u1,n2(t), u2,n2(t)] is the FOD-

transformed disturbance term with a covariance matrix of Σ =
[ σ11 σ12

σ21 σ22

]
. Π is a k×2 coefficient

matrix for exogenous regressors, and Pj is a 2× 2 matrix for j = 1, ...p, with the diagonal elements

capturing the own time-lagged effects, and off-diagonal elements capturing the time-lagged cross

effects. If j > 2, Equation (4b) is a high order dynamic model. We use -γ·l, ψ·l, ρj,·l, and π·l to

denote the lth column of the corresponding parameter matrices as before.

13Instead of a total number of m equations in the PVAR system, the DSSES consists of two equations only: the

house price equation and the foreclosure equation. It also includes xs as exogenous variables.
14We are assuming that the system only involves one weights matrix. This assumption is made for ease of presen-

tation, but also seems to be the typical specification in applied work. Our results can be generalized in a straight

forward way to the case in which each spatially lagged variable depends upon a weights matrix which is unique to

that variable.
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Equation (4a) falls under the general form of spatial dynamic panel simultaneous equations

models described in Yang and Lee, 2018.15 Besides the previously discussed endogeneity arriving

from the FOD-transformed own time lag (i.e., represented by the nonzero diagonal elements of Pj)

as in the PVAR, there are two new sources of endogeneity: the simultaneous-cross effect represented

by the nonzero off-diagonal elements in Γ, and the contemporaneous-spillover effect represented by

the nonzero diagonal elements of Ψ(i.e., often referred to as spatial lag in the spatial literature).

Valid IVs for he FOD-transformed own time lag, yl,n2(t − j), suggested in the dynamic panel

literature include exogenous variables from all the time periods (i.e., Xn(t) ∀t = 1, 2, · · · ,T), and

own untransformed terms from the current time period and all the previous time periods (i.e.,

y∗l,i(t − j), y
∗
l,i(t − j − 1), · · ·).16 The number of feasible IVs is a function of t, and therefore the

dimension of corresponding IV matrix increases with t. A large number of IVs constructed from

all available time lags is beneficial, in principle, in terms of improving the asymptotic efficiency of

the IV estimator. However, when T gets large, the many IVs issue occurs: many IVs decrease the

variances of the IV estimator, but increase its bias. Considering the bias and variance trade-offs

and the benefit of maintaining a constant number of IVs across ts for an easy construction of the

IV matrix, we adopt Lee and Yu, 2014’s finite moments instrument variable (FMIV) approach 17

by limiting the number of time lags on the exogenous variables as well as the own untransformed

term.

The non-spatial simultaneous equations system literature suggests the use of exogenous vari-

ables excluded from the lth equation and the exogenous variables included in the lth equation as

instruments to take care of the endogeneneity arising from the simultaneous movement of multiple

equations. Meanwhile, common IVs suggested in the spatial literature for dealing with spatial lags

call for first-order and higher-order spatially lagged exogenous variables. We follow Yang and Lee,

2018’s IV strategy and construct our IV matrix as

Gn(t) =
[
Y∗n2(t− p) WnY

∗
n2(t− p) W2

nY
∗
n2(t− p) Xn(t) WnXn(t) W2

nXn(t)
]

(5)

where the exogenous variables (i.e., Xn(t)) and predetermined variables (i.e., Y∗n2(t−p) ) are raised

to first- and second- orders (i.e., pre-multiplied byWn andW2
n) to take care of the contemporaneous-

15Yang and Lee, 2018’s general form allows for a four-ways channel of spatial spillovers: contemporaneous and

with a time lag; within-equation and cross-equations. Our DSSES specification leaves out the time-lagged and

cross-equation spillovers terms.
16Among others, see Arellano and Bond, 1991; Elhorst, 2010; Alvarez and Arellano, 2003; Kelejian and Prucha,

2004; Revelli, 2001 for examples.
17Lee and Yu, 2014 first show that the 2SLS estimator based on FMIV approach is consistent and asymptotically

normal in Theorem 1 (though less efficient than the GMM estimator proposed in their paper). The set of IVs

suggested by Lee and Yu, 2014 consists of both linear and quadratic moments. Due to the complication in our main

model specification - the DSSES is a equations system but not a single equation, the quadratic moments become less

straight forward. We therefore adopt only the linear moments from Lee and Yu, 2014 instead of pursuing their best

IV estimator.

12



spillover. The IV matrix, Gn(t), is not equation specific, because Xn(t) = X1,n(t) ∪ X2,n(t) rep-

resents the complete set of exogenous variables of the system, and Y∗n2(t − p) reflects all the

predetermined variables of the system. After stacking observations from ts (∀t = 1, 2, · · · ,T), the

IV can be written into a matrix as

Gn,T =


Y∗n2(1 − p) WnY

∗
n2(1 − p) W2

nY
∗
n2(1 − p)

...
...

...

Y∗n2(T − p) WnY
∗
n2(T − p) W2

nY
∗
n2(T − p)

Xn(1) WnXn(1) W2
nXn(1)

...
...

...

Xn(T) WnXn(T) W2
nXn(T)


,

with a dimension of nT × (6 + 6k).

We stack observations from all ts (∀t = 1, · · · ,T) for the lth equation , and let Wn2,T =

I2 ⊗ IT ⊗Wn for conciseness, Equation (4b) becomes

yl,n2,T = −Yn2,Tγ·l + Wn2,TYn2,Tψ·l + Xl,n,Tπ·l +

p∑
j=1

Y
(−j)
n2,Tρj,·l + ul,n2,T,

∀l = 1, 2,

(6)

where Yn2,T, Wn2,TYn2,T, and Y
(−j)
n2,T (∀j = 1, · · · , p) are all endogenous. Let

Zl,n,T =
[
Yn2,T Wn2,TYn2,T Xl,n,T Y

(−1)
n2,T · · · Y(−p)

n2,T

]
, and

θl =
[
−γ′·l ψ′·l π′·l ρ′1,·l · · · ρ′p,·l

]′
,

Equation (6) can be simplified to

yl,n2,T = Zl,n,Tθl + ul,n2,T,

∀l = 1, 2.
(7)

We first estimate Equation (7) separately for each equation. The 2SLS estimator of the lth

equation has the form of

θ̂Gl,2sls = (Z′l,n,TP
GZl,n,T)−1Z′l,n,TP

Gyl,n2,T

where PG = Gn,T(G′n,TGn,T)−1G′n,T is the projection matrix of the instrument matrix Gn,T. The

2SLS estimator’s asymptotic distribution follows

√
nT(θ̂Gl,2sls − θl)

d→ N
(

0, plim
n→∞

[ σl
nT

(Z′l,n,TP
GZl,n,T)

]−1)
,

with large n and T.
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To further extend the 2SLS estimator to a 3SLS estimator suggested by Yang and Lee, 2018 for

an improved estimation efficiency, we stack both equations from Equation (6) and write the system

into a vectorized form as

yn2,T = Zn,Tθ+ un2,T, (8)

where yn2,T =
[
y′1,n2,T y′2,n2,T

]′
, Zn,T = diag[ Z1,n,T, Z2,n,T ] =

[
Z1,n,T 0

0 Z2,n,T

]
, θ =[

θ′1 θ′2

]′
, and un2,T =

[
u′1,n2,T u′2,n2,T

]′
. The variance-covariance matrix of the residuals

in Equation (8) is of the form, Σ ⊗ In,T, with Σ =

[
σ11 σ12

σ21 σ22

]
, and In,T denoting an nT × nT

identify matrix. The 3SLS estimator of the entire equation system is

θ̂G3sls = [Ẑ′n,T(Σ̂−1 ⊗ In,T)Zn,T]−1Ẑ′n,T(Σ̂−1 ⊗ In,T)yn2,T

with Ẑn,T = diag[ PGZ1,n,T, PGZ2,n,T ] =

[
PGZ1,n,T 0

0 PGZ2,n,T

]
, and the variance-covariance

components of Σ̂ =

[
σ̂11 σ̂12

σ̂21 σ̂22

]
can be estimated using a first stage estimator, θ̂Gl,2sls.18 Yang

and Lee, 2018 note the asymptotic distribution of this estimator is

√
nT(θ̂G3sls − θ)

d→ N
(

0, plim
n→∞

1

nT
[Ẑ′n,T(Σ−1 ⊗ In,T)Ẑn,T]−1)

)
,

with large n and T.

3.3 Spillover Enhanced Cross Effect

In our DSSES specification, contemporaneous-spillover effects serve as an amplification channel

enhancing the interactive feedback between house prices and foreclosures. To understand how these

spillover effects matter in terms of amplifying the transmission of a structural shock, we compute

the impulse response to a structural shock.

To evaluate our DSSES specification in its original non-transformed format, we first revert the

FOD-transformation, Equation (4a) now becomes

Y∗n2(t)Γ = WnY
∗
n2(t)Ψ + Y∗n2(t− 1)P + X∗n(t)Π + d′ ⊗ ln + C+U∗n2(t),

where the input variables with superscript ∗ indicate they are in the original form without the

FOD transformation. For simplicity, let R∗(t) = X∗n(t)Π + d′ ⊗ ln + C denote the sum of all the

exogenous terms. After moving all the endogenous terms to the left-hand-side of the functions, the

system is expressed as

(In + γ12In −ψ11Wn)y∗1,n2(t) = ρ11y
∗
1,n2(t− 1) + R∗·1(t) + u∗1,n2(t), (9a)

18As suggested by Kelejian and Prucha, 2004, the first stage estimator, θ̂Gl,2sls, can be used to calculate the residuals

in ûl,n2,T , which in turn are used to form estimates of the elements in Σ as σ̂ml = 1
nT
û′m,n2,Tûl,n2,T(∀m, l = 1, 2).
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and

(In + γ21In −ψ22Wn)y∗2,n2(t) = ρ22y
∗
2,n2(t− 1) + R∗·2(t) + u∗2,n2(t), (9b)

with R∗·l(t) and u∗l,n2(t) denoting the lth column of R∗(t) and U∗n2(t) respectively ∀l = 1, 2. We

then stack Equation (9a) and Equation (9b) into a 2n- dimensional vector form as

Φy∗n2(t) = Py∗n2(t− 1) + r∗(t) + u∗n2(t), (10)

where Φ =

[
In −ψ11Wn γ12In

γ21In In −ψ22Wn

]
, P =

[
ρ11In 0n

0n ρ22In

]
, y∗n2(t) = [y∗1,n2

′(t), y∗2,n2
′(t)]′,

y∗n2(t−1) = [y∗1,n2
′(t−1), y∗2,n2

′(t−1)]′, r∗(t) = [R′·1
∗(t), R′·2

∗(t)]′, and u∗n2(t) = [u∗1,n2
′(t), u∗2,n2

′(t)]′.

We can invert Equation (10) to express y∗n2(t) as a function of its history, the exogenous

variables and structural innovations as

y∗n2(t) = Φ−1Py∗n2(t− 1) + Φ−1r∗(t) + Φ−1u∗n2(t), (11)

Equation (11) can then be used to calculate the impulse response function to a structural

innovation, u∗n2(t).

4 Data and Summary Statistics

We use data for the lower 48 contiguous United States, omitting the District of Columbia.

4.1 House Price and Foreclosure

We use data measured at a quarterly frequency. For house prices we are interested in the real

(inflation-adjusted) quarterly log difference in house prices. We use the FHFA seasonally adjusted

all-transactions price index to measure nominal prices and deflate it by the Consumer Price Index

for all items less shelter as published by the U.S. Bureau of Labor Statistics.

For foreclosure rate we use the natural log of the state level foreclosure start rate as estimated

by the Mortgage Bankers Association’s National Delinquency Survey. Our foreclosure rate is the

percent of all active loans that start a foreclosure in a quarter.

4.2 Neighborhood Specification

We construct the weight matrix of Equation (3), Wn, as an adjacency matrix by setting the

weight element, wij, equal to 1/ci if i and j border to each other, where ci is the number of i’s

adjacent neighbors; and zero otherwise. Our adjacency weight matrix thus describes the proximity

of between our observation units.

To test the robustness of our model, we also estimate Equation (3) using an alternative speci-

fications of the weight matrix. The alternative weight matrices and their results are described in

next section.
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4.3 Instrumental Variables

To distinguish the impact of foreclosures on house prices from that of house prices on foreclosures

in the DSSES specification, our 3SLS estimator calls for valid IVs for dealing with the endogeneity

arising from FOD-transformed own time-lags, contemporaneous-spillover effect, and simultaneous-

cross effect in each of the lth equation. As described in Equation (5), the building block, Xn(t),

in the IV matrix consists of two types of exogenous variables: the variables that are excluded

from the lth equation and those that are included in the lth equation. The main challenge comes

from identifying the appropriate variables meeting such exclusion criteria. In other words, we need

economic variables that are correlated with house prices but not correlated with foreclosures, and

vice versa.

4.3.1 ARM Resets as an Instrument for Foreclosures

To quantify the causal effect of foreclosures on house prices, we propose a novel instrument by

leveraging the space and time variations of the number of adjustable rate mortgages (ARMs) that

are hit by their contractual interest rate reset clock. Specifically, we calculate the percentage of

ARMs encountering upward rate reset over the total number of active loans in a given month for

a given state and use it as the exclusion restriction for identifying the house price equation.

ARMs were quite popular during the housing boom years of 2003-2006 as they offered borrowers

low initial payments. ARMs often charge a low introductory rate (i.e., teaser rate) that helps

entice borrowers and increase the marketability of ARMs over fixed rate mortgages (FRMs). ARM

products typically involve two phases: the introductory period in which the interest rate is fixed, and

followed by a second phase in which the rate is periodically moved to reflect prevailing market rates.

The contract of an ARM features several key variables. It defines the length of the introductory

period, in which the interest rate is fixed; a selected market index (e.g., LIBOR, TBill, Prime rate,

etc.) which is used to reset rates in the second phase; the margin, or the spread between the index

rate and the reset rates; floors and caps which determine the maximum and minimum amount the

rate may move either for one reset period or for the life of the loan; and the frequency of rate

adjustment which is usually one year.

The introductory rate is only temporary and most time ranges between 3 and 10 years. After the

expiration of the introductory period and moving onto the second phase of an ARM, the borrower

is confronted with the fluctuation of interest rate and its frequent reset. ARM indeed carries a

financial risk for the borrowers. Due to this risk, rational borrowers tend to convert their ARMs

to FRMs or refinance into new ARMs, prior to the rate reset date providing the prevailing market

rate is favorable. Often time, ARM borrowers who are unable to refinance prior to the expiration

date are those experiencing rising market rates, or a weak equity position, or both.19 These ARM

19One could argue that the borrower might have experienced declining market rates, and therefore anticipated the
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borrowers are more likely to encounter an increased difficulty to repay their mortgage if the rate

resets up. The more the number of borrowers who are stuck with their ARM and experiencing the

rate reset, the more the foreclosures. Thus a positive correlation is expected between the percentage

of ARMs that are reset up and the foreclosure rate.

A hot housing market might attract more ARM borrowers due to the low initial payments. It

is reasonable to believe that the number of ARMs issued might be correlated with house price at

the loan origination time period. However, we do not expect the number of ARMs that are reset

in a future time period have much to do the future house price directly, unless it is through the

foreclosure channel.

We focus on the loans experiencing a rate increase during their initial rate reset using Black

Knight’s McDash 1st lien data. We derive two indicators for our ARM reset calculation. First, we

create a variable capturing the date when a reset hits. An ARM reset is flagged at the introductory

expiration date or when the first principle and insurant (P&I) payment amount changes, whichever

comes first.

Then, we compare the scheduled P&I payment from the current month with that of the previous

month to identify whether the rate increases at the reset day.20 The McDash database contains

historical monthly loan-level information for more than 180 million mortgages; between 2005 and

2018 the McDash data has covered between 52 and 70 percent of the U.S. mortgage market. When

aggregated across states and time, the average reset rate is 0.19% and the average reset rate with

higher payment is 0.11%. The number stays roughly the same across states. For example, California

has an average re-set rate of 0.22% and 0.13% are paying higher payment upon reset. Texas has

an average reset rate of 0.18% and 0.09% are paying higher payment upon re-set. But these rates

fluctuate significantly across time.

4.3.2 Natural Population Growth as an Instrument for House Prices

To quantify the causal effect of house prices on foreclosures, we use the quarterly change in the

growth rate of natural population (i.e., ∆(births - deaths)/population) as our instrument. Popula-

rate will further decline at her ARM reset date. So she would not mind moving into the second phase of her ARM

instead of re-financing out of it. However, if the market rate is trending down, from a theoretical perspective, the

borrower can always better off by re-financing into a new ARM with a more favorable term instead of waiting for the

expiration of her existing ARM. Though from an empirical perspective, due to frictions (e.g., re-finance cost), this

scenario is possible, but not in a large scale - especially when the market rate has dropped significantly over a long

enough period (e.g., the post-crisis time), borrowers qualified for re-financed loans would have done so already
20Because our ARM reset measure is used to proximate the number of borrowers who are likely to experience a

payment shock and therefore fall behind their payment schedule afterwards, we are mainly interested in tracking

ARM borrowers who have not yet defaulted prior to the rate reset as our base population. To alleviate the potential

data pollution from those defaulted borrowers, we drop out loans from our tracking population when they become

delinquent(i.e., 90DPD) at the time of the delinquency. Loans ever modified are excluded from our data sample if

the time of modification occurs prior to the reset date.
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tion growth reflects housing demand and is an important variable in many models of house prices.

When population growth increases, household formation rates tend to rise, driving up housing de-

mand. In markets with elastic housing supply over time the impact of increased population will

be mitigated by expansion of the housing supply. However, many markets in the U.S. have inelas-

tic housing supply. Moreover, housing is long-lasting and thus inelastic with respect to negative

shocks. The housing supply just doesn’t shrink when housing demand contracts. Rather, vacancy

rates tend to rise and house price growth suffers.

State population growth by itself however, is not a suitable candidate instrument due to migra-

tion across states. Areas experiencing robust job growth tend to higher population growth rates as

a booming economy attracts workers. For example, during the energy boom from 2007-2014 North

Dakota experience a large influx of workers and the resident population increased sharply. This

migration flow is likely correlated with the same shocks that drive foreclosure rates, so we need to

find a way to control for demand shocks that are largely uncorrelated with economic conditions.

The quarterly change in the natural population growth rate is an instrument we can use. The

natural population growth rate is defined as births minus deaths divided by population. While there

may be some correlation between economic conditions and fertility/mortality the impact is much

smaller, likely with considerable lags thus most of the cross-state variation in natural population

rates is likely uncorrelated with state economic conditions.

4.4 Summary Statistics

Our estimation window covers 2005Q1-2018Q1, a period of 13.25 years (53 quarters). In addition

to our instruments described above, we also include additional controls to account for economic

and general housing market conditions. These controls include nonfarm payroll employment, per

capita income, and single-family housing permits. For each of these controls we take the quarterly

log difference in the variable. Summary statistics and variable definitions for our variables are

displayed in Table (1).
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Table 1: Summary Statistics (2005Q1-2018Q1)

Variable Mean Std Min Max Obs

dlemp lag1 0.002 0.006 -0.066 0.03 2544

dlperm lag1 -0.012 0.176 -2.466 2.641 2544

dlpinc lag1 0.003 0.013 -0.095 0.12 2544

dlrhpi 0 0.019 -0.109 0.092 2544

dnpopg 0 0.001 -0.007 0.007 2544

lfcl -0.646 0.592 -2.303 1.324 2544

log arm -7.236 0.842 -9.261 -4.125 2544

Notations are providede below.

dlemp : log difference in nonfarm payroll employment

dlperm: log difference in single-family housing permits

dlpinc: log difference in per capita income

dlemp lag1: 1 quarter lag in dlemp

dlperm lag1: 1 quarter lag in dlperm

dlpinc lag1: 1 quarter lag in dlpinc˙lag1

dlrhpi: log difference in real house price index

dnpopg: quarterly difference in the natural population

growth rate (births- deaths)/population

lfcl: log of foreclosure start rate

log arm: log of arm reset share
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5 Estimation Results

In this section, we estimate the causal effect between house prices and foreclosures for the PVAR

and the DSSES. Based on the estimates, we compute the short-run and long-run cross effects and

discuss the different outcomes from these two model specifications.

5.1 PVAR

Our main result involves the dynamic system of spatial simultaneous equations systems (DSSES)

described in Section (3.2). However, before we proceed to the more complicated dynamics embedded

in the DSSES framework it is useful to consider the results of PVAR, discussed in Section (3.1).

The PVAR approach provides a useful benchmark and also allows us to compare our results directly

to previous literature, particularly CLM who use a PVAR.

The PVAR treats all the variables as endogenous and estimates a reduced form equation. Then,

identification of structural innovations is achieved through some strategy. The most common

approach, and the one used by CLM is a recursive identification scheme. The recursive identification

scheme requires that the variables only respond contemporaneously to innovations in variables

ordered ahead of that equation. Thus, the first variable in the system is assumed to respond to

only itself. The second variable responds to the first and itself, and so on, until the last variable

in the system responds to innovations in all other equations. Table (10) in Appendix (B) presents

the estimation results for a PVAR(12).

The coefficients of the PVAR are difficult to interpret so it is useful to consider summary

statistics. One useful summary is the forecast error variance decomposition. The forecast error

variance decomposition provides an estimate of the proportion of variation at a given horizon that

is attributable to innovations in one of the variables.

The first panel provides estimates for the proportion of forecast errors for employment at-

tributable to various innovations at horizons of 4, 8 and 24 quarters. For the employment variable,

over 80% of the variation 4 quarters is due to innovations to the employment equation. The fore-

closure rate only contributes a small amount, slightly over 1%. At 24 quarters innovations to the

foreclosure equation contribute less that 5 percent of the variation. Note that for each of the first

3 variables (employment, per capita income and permits) innovations to the foreclosure equation

contribute less than 5 percent even out to 24 quarters.

The fourth panel, which shows the house price response to shocks is of key interest. This tells us

what proportion of real house price variation can be attributed to innovations in various variables.

We find that innovations to the foreclosure equation account for between 16.6 and 22.8 percent

of the variation in house prices. This is notably higher than the results in CLM, which find that

foreclosure innovations only explain about 5 percent of the variation. Our PVAR includes different

variables, but that is not the main reason for the divergence. If we include the same variables as
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Table 2: Forecast Error Variance Decomposition

FEVD: Employment Response to Shocks (2005-2018)

horizon dlemp dlpinc dlperm dlrhpi lfcl

4 0.808 0.013 0.087 0.081 0.011

8 0.521 0.022 0.186 0.235 0.036

24 0.488 0.032 0.219 0.213 0.048

FEVD: Per capita income Response to Shocks (2005-2018)

horizon dlemp dlpinc dlperm dlrhpi lfcl

4 0.053 0.916 0.012 0.016 0.003

8 0.102 0.836 0.013 0.042 0.008

24 0.106 0.74 0.05 0.066 0.038

FEVD: Single-Family Permits Response to Shocks (2005-2018)

horizon dlemp dlpinc dlperm dlrhpi lfcl

4 0.055 0.007 0.893 0.044 0.002

8 0.054 0.009 0.864 0.051 0.021

24 0.057 0.019 0.829 0.066 0.03

FEVD: House Price Response to Shocks (2005-2018)

horizon dlemp dlpinc dlperm dlrhpi lfcl

4 0.04 0.039 0.038 0.718 0.166

8 0.051 0.034 0.046 0.651 0.218

24 0.084 0.043 0.175 0.471 0.228

FEVD: Foreclosure Response to Shocks (2005-2018)

horizon dlemp dlpinc dlperm dlrhpi lfcl

4 0.004 0.003 0.031 0.029 0.933

8 0.007 0.004 0.132 0.091 0.766

24 0.007 0.012 0.307 0.073 0.601
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in CLM we still would see a divergence between our results and CLM’s.

The main reason we see a divergence between our result and CLM is due to the sample selection

period. CLM estimate their PVAR on data from 1981 to 2009. This period excludes much of the

long recovery in housing markets following the Great Recession. Our sample covering 2005Q1-

2018Q1, while shorter, extends beyond the Great Recession and into the recent housing recovery.

During our sample period, the foreclosure rate was much higher and more volatile. Our sample,

allows us to trace out the dynamic linkages between house prices and foreclosure rates during

periods when foreclosure start rates spiked and subsequently fell.

5.2 DSSES

The PVAR does not fully exploit the information contained in the state data. In particular, it

does not take advantage of possible spatial autocorrelation. It seems unlikely that the innovations

in one state would not have any impact on the outcomes in a neighboring state. To help control for

possible spatial autocorrelation and to allow for contemporaneous interactions between foreclosure

starts and house prices, we estimate the DSSES model described in Equation (3). We use the

instrumental variables described in Section (4.3) to identify the contemporaneous impact of a

foreclosure innovation on house prices and vice versa.

We chose to limit our estimation to a single time lag (i.e., p = 1) for each equation. While the

estimation is straightforward to include additional lags into the specification, the results become

more difficult to interpret. The inclusion of a single time lag (own and cross equation) along with a

spatial lag provides a sufficiently rich model of the state house price and foreclosure rate interactions.

For an easy cross reference, we rewrite Equation (3) for p = 1 (to simplify the notations, we leave

out the subscript of p from the coefficients of ρs and replace p by 1 for the time index of time-lagged

ys) below

y1,i(t) = −γ12y2,i(t)+ψ11WnY1,n2(t)+ρ11y1,i(t−1)+ρ12y2,i(t−1)+x′1,i(t)π·1+u1,i(t), (12a)

and

y2,i(t) = −γ21y1,i(t)+ψ22WnY2,n2(t)+1ρ22y2,i(t−1)+ρ21y1,i(t−1)+x′2,i(t)π·2+u2,i(t), (12b)

for t = 1, 2, · · · ,T and i = 1, 2, · · · , n. We treat employment, per capita income and permits as

predetermined variables and include them with a time lag of a single quarter. Table (3) presents

our main results corresponding to Equation (12).

Our DSSES includes two variables the real house price growth rate (HPA) and the log foreclosure

rate (FCL). Let us consider the HPA equation first before turning to the FCL equation.
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Table 3: DSSES Estimation - State Adjacency Weights

Beta 3SLS Std Error t value Pvalue

HPA: FCLonHPA (−γ12) -0.054 0.005 -11.194 0

HPA: Spatial lag (ψ11) 0.444 0.038 11.831 0

HPA: owntime lag1 (ρ11) 0.228 0.046 4.934 0

HPA: cross FCL lag1 (ρ12) 0.05 0.005 10.467 0

HPA: dnpopg (π·1) 0.352 0.194 1.818 0.035

HPA: dlemp lag1 (π·1) 0.459 0.057 8.063 0

HPA: dlpinc lag1 (π·1) -0.085 0.021 -4.133 0

HPA: dlperm lag1 (π·1) -0.002 0.001 -1.755 0.04

FCL: HPAonFCL (−γ21) -6.684 0.73 -9.161 0

FCL: Spatial lag (ψ22) -0.044 0.028 -1.539 0.062

FCL: crossHPA lag1 (ρ21) 1.212 0.742 1.634 0.051

FCL: owntime lag1 (ρ22) 0.932 0.035 27.002 0

FCL: log arm (π·2) 0.01 0.005 1.774 0.038

FCL: dlemp lag1 (π·2) 2.699 1.03 2.62 0.004

FCL: dlpinc lag1 (π·2) -0.689 0.326 -2.11 0.017

FCL: dlperm lag1 (π·2) -0.076 0.02 -3.9 0

HPA refers to dlrhpi equation

FCL refers to lfcl equation
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5.2.1 House Price Equation

Our results indicate that a 1 percent increase in the foreclosure rate ceteris paribus reduces real

house prices by 5.4 basis points. The effect is dampened by the positive coefficient on the cross lag

which nearly equals the contemporaneous coefficient. The reflects the fact that over the long run

foreclosure innovations ought to have limited impact on the level of real house prices.

We find a significant positive coefficient on the spatial lag of 0.444. This implies that a 1 percent

increase in the neighboring states’ house prices leads to a 0.444 percent increase in a state’s house

prices. We also see a own time lag of 0.228, implying house price innovations are persistent. The IV

for house prices, dnpopg has a small, but statistically significant coefficient of 0.352. This implies

that a 1 percentage point increase in the state’s natural population growth rate (birth rate minus

death rate) leads to a 0.352 percent increase in real house prices.

The control variables dlemp lag1, dlpinc lag1, and dlperm lag1 show up as significant

drivers of house prices though their signs are difficult to interpret in isolation due to consider-

able collinearity between the three variables. For example, employment growth shows up with a

positive coefficient while per capita income has a negative coefficient. However, employment is un-

likely to increase without an impact on per capita income. When we estimate the model with only

one of the predetermined variables the signs are as expected (positive), but our ability to identify

the contemporaneous impact of foreclosure shocks is reduced.

5.2.2 Foreclosure Equation

We now move on to the foreclosure equation. We find a large and significant negative coefficient

on HPA, indicating an increase in house prices lower the foreclosure start rate as economic theory

would suggest.

The spatial lag coefficient for the foreclosure equation shows up with a small, but statistically

significant sign. The interpretation of this negative spatial lag coefficient is not straightforward, but

it is important to remember that we have estimated a complex dynamic equation system. Results

below will provide additional insight (e.g., see Figure (??) for FCL response to FCL shock).

There is a lot of persistence in the foreclosure equation with an owntime lag1 of 0.932. This

implies that four quarters following a shock over 3/4 of the effect (0.9324 = 0.7545) remains.

The cross lag of HPA on FCL has opposite sign to the contemporaneous impact of HPA on FCL

indicating some dampening over time.

Our instrument log arm has a statistically significant impact on the foreclosure rate. A one

percent increase in the share of mortgage loans that experience a payment shock increases the fore-

closure rate by 1 basis point. That effect may seem economically small, but the standard deviation

of our log arm indicator is 0.842, indicating a typical shock to log˙arm raises the foreclosure rate

by 0.842 percent.
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As in the HPA equation interpreting the control variables individually is difficult, but we see

statistically significant impacts from each control.

5.2.3 Short Run and Long Run Anlaysis

Even though the DSSES results are easier to inspect than the PVAR(12) coefficients, it is still

somewhat difficult to build intuition for such a complex model by only considering coefficients. The

tables below shew some additional light on the results.

First let us consider the short-run and long-run effect. We first can solve Equation (11) to

consider the short-run impact of a shock. We have 48 states in our estimation sample, and the

impact for each state differs slightly based on the number of neighbors, we can compute a summary

which is the average of the state responses. A 1 standard deviation innovation to the HPA equation

(=1.08%) results in a 1.98 percent increase in house prices and a 13.1 percent decline in the

foreclosure rate. A standard deviation (=16.5%) to the log foreclosure start rate leads to a 1.62

percent decline in house prices and a 27.1 percent increase in the foreclosure rate.

There there is no long-run impact to the foreclosure rate. The model is stationary. However

because we specified house prices in log differences, we can compute the cumulative long-run impact

to the level of house prices. A one standard deviation shock to house prices leads to a cumulative

increase in house prices of 2.6%, while a 1 standard deviation shock to the foreclosure rate leads to

a 2% decline in house prices.

Using the estimated coefficients we can also compute the impulse response to a structural

innovation to house prices or foreclosure rates. Note that this is only a partial response as we have

not estimated the full dynamic relationship between our endogenous variables (HPA and FCL) and

our predetermined variables.

Because our interest is in foreclosure innovations and because our Forecast Error Variance De-

compositions above indicates that foreclosure innovations only contribute a small amount to vari-

ations in our predetermined variables (dlemp, dlpinc, and dlperm) this partial impulse response

captures most of the dynamics that a fully specified model is likely to generate.

Let’s consider first the response of HPA to a 1 standard deviation structural shock to one state.

For illustration purposes we choose Nevada and present the results for nearby states, AZ, CA, ID,

OR, and UT. Due to the spatial lag in our model, shocks to NV generated responses in its neighbors

(the results extend to all states, but die off quickly with distance). Table (4) shows the cumulative

response of house prices 4, 8, and 24 quarters following a structural shock to NV FCL.

This shows that after 4 quarters a 1 standard deviation shock the NV foreclosure equation

results in a cumulative decline of 2.5% to NV house prices. Neighboring CA also experiences a

decline, but of a more modest amount (1.1%). After 24 quarters the cumulative decline is smaller

in absolute value as prices recover. And in nearby states the cumulative response is almost zero
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Table 4: Cumulative Real House Price Response to a standardized NV Foreclosure Shock

horizon AZ CA ID NV OR UT

4 -0.0075 -0.0109 -0.007 -0.0252 -0.0097 -0.0063

8 -0.0053 -0.0076 -0.0049 -0.0229 -0.0068 -0.0044

24 -0.0014 -0.0021 -0.0013 -0.0195 -0.0019 -0.0011

(0.21% for CA).

We can also compute the HPA response of each of the six states to a NV HPA shock in Table

(5).

Table 5: Cumulative Real House Price Response to a a standardized NV Real House Price Shock

horizon AZ CA ID NV OR UT

4 0.0107 0.0156 0.0099 0.0321 0.0139 0.0089

8 0.0094 0.0137 0.0087 0.0307 0.0121 0.0078

24 0.0056 0.0085 0.0049 0.0265 0.0072 0.0045

Four quarters following a 1 sd shock to NV HPA, NV HPA is up 3.2%. 24 quarters later, NV

house prices are up 2.65%. Neighboring CA is up 1.6% four quarters later and 0.85% 24 quarters

later.

We can also consider the FCL response of each of the six states to a NV FCL shock and a NV

HPA shock. For these we do not compute the cumulative response but the response in the log of

foreclosure starts 4, 8, and 24 quarters following a shock.

Table 6: Log Foreclosure Response to a a standardized NV Foreclosure Shock

horizon AZ CA ID NV OR UT

1 0.0198 0.0301 0.0175 0.2731 0.0256 0.016

4 0.0244 0.0339 0.0235 0.244 0.032 0.0205

8 -0.0012 -0.0037 -0.0005 0.1699 -0.0013 -0.0012

24 -0.0129 -0.0214 -0.0117 0.0561 -0.0167 -0.0115

Following a foreclosure shock, NV FCL rate is up 0.27%. Nearby CA is up 3% as spatial

spillovers are positive (recall that the system accounts for impact on both FCL and HPA). But

after 24 quarters NV foreclosure rates are still up 5.6%, but now the level of neighboring states have

experienced a modest decline (2.1% for CA). This could be do to displaced demand. Households

who were foreclosed in NV may move to nearby states, bolstering housing markets and leading to

(very modest) declines in the FCL rate in those states.
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Table 7: Log Foreclosure Response to a a standardized NV Real House Price Shock

horizon AZ CA ID NV OR UT

1 -0.0275 -0.0422 -0.0242 -0.1329 -0.0356 -0.0223

4 -0.043 -0.062 -0.0403 -0.1409 -0.0559 -0.0361

8 -0.0177 -0.0256 -0.0164 -0.0918 -0.0228 -0.0148

24 0.0049 0.0077 0.0045 -0.0229 0.0064 0.0042

Our results show that the cumulative response of the level of real house prices to a one standard

deviation shock to foreclosure rates (see Table (4)) is similar to the response in the log level of the

foreclosure rate in response to a one standard deviation house price shock (see Table (7)). After six

years, a one standard deviation shock to the Nevada foreclosures lowers real house prices in Nevada

by 1.95 percent, while six years after a one standard deviation shock to Nevada’s house prices

foreclosure rates have declined by 2.29 percent. Thus, the cumulative response to a standardized

shock is only 36 percent larger for house prices on foreclosure than for foreclosure on house prices.

This result stands in contrast to CLM (Figure 3) who find that the standardized foreclosure response

to prices is 79% larger than the standardized price response to foreclosures.

It is also useful to compare our results in terms of the magnitude of responses. MST find that

a one-standard deviation increases in foreclosures results in an 8% to 12% decline in house prices

over 9 quarters. In contrast, CLM find a shock that results in a two-year increase in the foreclosure

start rate of 4.3 percentage points results in a nine-quarter cumulative decline in house prices of

2.7%, and 6.8% over the long run. Tables 4-8 report the response of a standardized shock, and thus

are not directly comparable to MST or CLM.

Instead, we can compute the size of a standardized foreclosure shock that is sufficient to increase

a state’s own foreclosure rate by 1 standard deviation (as measured in data). The standard deviation

of the log foreclosure rate in our sample (see Table (1)) is 0.59 percent. A standardized shock to

Nevada’s foreclosure rate increases Nevada’s foreclosure rate 0.1699 after 8 quarters (see Table (6)).

Thus, we need a shock that is 3.47 standard deviations (0.59/0.1699) to generate a one-standard

deviation increase in Nevada’s foreclosure rate. Multiplying our result in Table 4 by 3.47 indicates

that a 1-standard deviation shock (comparable to the one considered in MST and CLM) decreases

real house prices 7.9 percent after 8 quarters.

5.3 Alternative Weight Matrices

In this section we present results using alternative weight matrices. We consider two alternatives.

In the first, we group states based on the U.S. Census Bureau’s division. States within the same

division are all neighbors, while states in other divisions are not neighbors. For example, TX, LA,

27



OK, and AR (members of the West South Central Division) are all neighbors, but NM is not a

neighbor with TX because it is int he Mountain Division. Also note that we continue to exclude

HI and AK from our analysis, so the Pacific division consists of only CA, OR, and WA.

In our second alternative weight matrix, we use state-to-state migration flows based on IRS

data. We consider the number of exemptions that were filed in a particular state where the return

had been filed in another state in the previous year. We base our weight matrix on the number of

in-migrants (not net flows) from one state to another. To smooth out volatility we compute the

annual average number of immigrants to each state from 1995-2005. The weights are based on the

share of all in-migrants over that period which came from a particular state.

Because California has a large number of out-migrants, this weighting scheme effectively places

more weight on CA.

Flow data is compiled from administrative records from IRS’s Individual Master File which

includes a record for every individual income tax return filed. The data is developed by matching

the records of individual income tax returns filed in the “base year”, using the social security

number of the primary taxpayer with the tax return filed the following year.

When the SSN of the primary taxpayer on the return filed in the base year matches the SSN of

the return filed in the following year the county residence was compared to determine if they were

the same. If the county address matched, then the taxpayer was counted as a “non-migrant”. If

the county address did not match, then the taxpayer was considered an “out-migrant relative to

the county address on the return filed in the base year and an ”in-migrant” relative to the county

address on the current year. Only returns for which the SSN reported on the return in the “base”

year matched the SSN reported on the return in following year are included.
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Table 8: DSSES Estimation- Division Weights

Beta 3SLS Std Error t value Pvalue

HPA: FCLonHPA (−γ12) -0.037 0.005 -7.547 0

HPA: Spatial lag (ψ11) 0.516 0.039 13.398 0

HPA: owntime lag1 (ρ11) 0.206 0.05 4.165 0

HPA: cross FCL lag1 (ρ12) 0.034 0.005 6.932 0

HPA: dnpopg (π·1) 0.219 0.181 1.211 0.113

HPA: dlemp lag1 (π·1) 0.355 0.051 6.983 0

HPA: dlpinc lag1 (π·1) -0.079 0.019 -4.196 0

HPA: dlperm lag1 (π·1) -0.002 0.001 -1.539 0.062

FCL: HPAonFCL (−γ21) -5.422 0.842 -6.437 0

FCL: Spatial lag (ψ22) -0.025 0.035 -0.712 0.238

FCL: crossHPA lag1 (ρ21) 0.72 0.863 0.834 0.202

FCL: owntime lag1 (ρ22) 0.902 0.04 22.295 0

FCL: log arm (π·2) 0.017 0.006 2.905 0.002

FCL: dlemp lag1 (π·2) 1.095 1.06 1.033 0.151

FCL: dlpinc lag1 (π·2) -0.394 0.34 -1.16 0.123

FCL: dlperm lag1 (π·2) -0.073 0.019 -3.763 0

HPA refers to dlrhpi equation

FCL refers to lfcl equation
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Table 9: DSSES Estimation- IRS Migration Weights

Beta

3SLS

Std Er-

ror

t value Pvalue

HPA: FCLonHPA (−γ12) -0.055 0.006 -8.823 0

HPA: Spatial lag (ψ11) 0.245 0.028 8.676 0

HPA: owntime lag1 (ρ11) 0.221 0.063 3.534 0

HPA: cross FCL lag1 (ρ12) 0.05 0.006 8.167 0

HPA: dnpopg (π·1) 0.754 0.237 3.184 0.001

HPA: dlemp lag1 (π·1) 0.527 0.065 8.099 0

HPA: dlpinc lag1 (π·1) -0.134 0.023 -5.729 0

HPA: dlperm lag1 (π·1) -0.003 0.002 -1.663 0.048

FCL: HPAonFCL (−γ21) -4.479 0.933 -4.799 0

FCL: Spatial lag (ψ22) 0.007 0.016 0.439 0.33

FCL: crossHPA lag1 (ρ21) 1.121 0.85 1.319 0.094

FCL: owntime lag1 (ρ22) 0.862 0.031 28.033 0

FCL: log arm (π·2) 0.03 0.006 5.079 0

FCL: dlemp lag1 (π·2) -0.412 1.131 -0.364 0.358

FCL: dlpinc lag1 (π·2) -0.271 0.359 -0.753 0.226

FCL: dlperm lag1 (π·2) -0.06 0.02 -3.047 0.001

HPA refers to dlrhpi equation

FCL refers to lfcl equation
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6 Conclusion

In this paper we studied the dynamic relationship of house prices and foreclosure rates across

space and time using a panel of U.S. states. Our results show that there is an economically signif-

icant impact of house prices on foreclosure rates and foreclosure rates on house prices. Moreover,

even at the state level neighborhood effects are important. Shocks to the foreclosure rate in one

state not only impacts house prices in that state, but also the foreclosure rate and house prices in

nearby states. When it comes to the housing market, what happens in Vegas doesn’t always stay in

Vegas. Our DSSES model estimation results show that a one standard deviation foreclosure shock

leads to a short-run real house price decline of 1.6 percent and a 2 percent decline in real house

prices over the long run. A one standard deviation shock to real house prices lowers the foreclosure

rate 13 percent in the short run. We also find significant spatial spillovers in both house prices and

foreclosure rates across states. For example, four quarters after a one standard deviation shock

to Nevada’s foreclosure rate, real house prices in California experience a cumulative decline of 1

percent.

This paper also introduces a novel estimation strategy for Dynamic Spatial Simultaneous Equa-

tions System (DSSES). The DSSES allows researchers to estimate a dynamic simultaneous equation

system with simultaneous equations, time lags and spatial lags in a panel data setting. This es-

timation technique could be a useful approach for modeling dynamics across space and time in

regional studies.

We also contributed to the growing literature interested in understanding the dynamics of house

prices and foreclosure rates by identifying two potentially useful instruments for state panel models.

The ARM payment shock could be used to identify the effects of foreclosure rates, while the natural

rate of population growth could serve as a useful instrument for housing demand shocks that is less

likely to be correlated with economic factors than pure population growth.

The fact that foreclosure rates have an economically meaningful impact on house prices at the

state level could be useful information for policymakers evaluating the effectiveness of foreclosure

mitigation programs. While the literature has established that spillovers of any individual property

die off after a short distance, the aggregate effect of multiple foreclosures in an area have impacts not

only on local housing markets, but ripple across space and time, magnifying their aggregate impact.

Studies that omit these important effects—contemporaneous causality and spatial lags—are likely

to underestimate that impact of foreclosure rates on house prices and thus understate the potential

benefits of foreclosure mitigation activities.

Appendix A FOD Transformation

Arellano and Bover, 1995 show the FOD transformation preserves the i.i.d. feature of the
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original error terms. We follow Lee and Yu, 2014’s notation and express the FOD operator

as, FT−p,T−p−1, as a (T − p) × (T − p − 1) matrix consisting of a subset of the eigenvectors of

JT−p = (IT−p − 1
T−plT−pl

′
T−p) (where IT−p is a (T − p) × (T − p) identity matrix and lT−p is a

(T − p)-dimensional vector of ones) - the eigenvectors corresponding to the unit eigenvalues, i.e.,

JT−pFT−p,T−p−1 = FT−p,T−p−1, FT−p,T−p−1F
′
T−p,T−p−1 = JT−p, and F′T−p,T−p−1FT−p,T−p−1 =

IT−p−1. To illustrate the idea of FOD transformation, it is convenient to express the input variables

of Equation (1a) in their vectorized forms. We let[
vec(Ynm(1)), vec(Ynm(2)), · · · , vec(Ynm(T − p− 1))

]
=[

vec(Y∗nm(1)), vec(Y∗nm(2)), · · · , vec(Y∗nm(T − p))
]
FT−p,T−p−1,[

vec(Ynm(0)), vec(Ynm(1)), · · · , vec(Ynm(T − p− 2))
]

=[
vec(Y∗nm(0)), vec(Y∗nm(1)), · · · , vec(Y∗nm(T − p− 1))

]
FT−p,T−p−1, and

We can further show the FOD transformation at the individual observation level (e.g., for spatial

unit i at time t in equation l) as

yl,i(t) =

(
T − p− t

T − p− t+ 1

) 1
2

[
y∗l,i(t) −

1

T − p− t

T−p∑
h=t+1

y∗l,i(h)

]
, (13a)

yl,i(t− 1) =

(
T − p− t

T − p− t+ 1

) 1
2

[
y∗l,i(t− 1) −

1

T − p− t

T−p−1∑
h=t

y∗l,i(h)

]
, (13b)

Similar definitions apply to the disturbances, intercepts and location fixed effects. Because F′T−p,T−p−1lT−p =

0, both the intercept and location fixed effects are eliminated from Equation (1). Also, the FOD-

transformed residuals, ul,i(t)s, are still i.i.d. across is and ts with

E(um,i(t)ul,j(s)) = {
0 if m 6= l or i 6= j or t 6= s

σml if m = l and i = j and t = s
,

because F′T−p,T−p−1FT−p,T−p−1 = IT−p−1.

The FOD-transformed lth equation (∀l = 1, 2, · · · ,m) at time t can be specified as

yl,nm(t) =

p∑
j=1

Ynm(t− j)ρj,·l + ul,nm(t). (14)

Stacking observations from all ts, the lth equation becomes

yl,nm,T−p−1 =

p∑
j=1

Y
(−j)
nm,T−p−1ρj,·l + ul,nm,T−p−1. (15)
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The superscript (−j) of Y
(−j)
nm,T−p−1 indicates the time lagged property of this variable. It is

important to note that the total number of observations in the lth equation reduces from n(T − p)

to n(T −p−1) after the FOD transformation. yl,nm,T−p−1 and ul,nm,T−p−1 are now n(T −p−1)

vectors. The dimensions of Y
(−j)
nm,T−p−1 is n(T − p− 1)×m.

From Equation (13b), it is obvious that after FOD transformation, yl,i(t − 1), depends on

observation not only at t− 1, but also those in the future time periods (i.e., t, t+ 1, · · · , T −p− 1).

Therefore, the transformed own time-lagged term, yl,i(t−1), is now correlated with the transformed

error term, ul,i(t).

Appendix B PVAR Estimate

We chose 12 lags to match CLM. The PVAR was estimated using the R package panelvar

Sigmund and Ferstl, 2017 which implements GMM estimator described in Section (3.1) and the

references therein.

Table 10: Dynamic Panel VAR Estimation: One-step GMM

dlemp dlpinc dlperm dlrhpi lfcl

lag1 dlemp 0.3155*** 0.3998** 2.0836 0.1371 0.6284

-0.0428 -0.1297 -2.372 -0.0907 -1.4671

lag1 dlpinc 0.0275*** -0.3072*** 0.2179 -0.1690*** 1.0253**

-0.0078 -0.0487 -0.2796 -0.0152 -0.3306

lag1 dlperm 0.0045*** -0.0044* -0.4770*** 0.0038** -0.0685**

-0.0007 -0.0021 -0.0674 -0.0013 -0.0264

lag1 dlrhpi -0.0573*** 0.1361*** 0.1953 0.4055*** -0.7065*

-0.0068 -0.0247 -0.3999 -0.0431 -0.3336

lag1 lfcl 0 0.0025 -0.0414* -0.0132*** 0.6029***

-0.0006 -0.0032 -0.0193 -0.0023 -0.0319

lag2 dlemp 0.1493*** 0.2063* 0.941 -0.3257** -1.5619

-0.0228 -0.0897 -1.0948 -0.1011 -1.1555

lag2 dlpinc 0.0206** 0.0805** 0.6547** 0.1766*** -0.5055

-0.0078 -0.0277 -0.2315 -0.0267 -0.3264

lag2 dlperm 0.0054*** -0.0059* -0.2683*** 0.0120*** -0.1242***

-0.0006 -0.0025 -0.0718 -0.0023 -0.0254

lag2 dlrhpi 0.0438*** 0.0463 3.0295*** -0.2524*** -0.9125*

-0.0085 -0.031 -0.6421 -0.0283 -0.3579

lag2 lfcl 0.0016*** 0.0044 -0.0242 -0.0141*** 0.1523***
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-0.0004 -0.0029 -0.0287 -0.002 -0.0336

lag3 dlemp 0.0074 0.0646 -4.8265** 0.4806*** -0.385

-0.0267 -0.094 -1.7279 -0.1101 -1.1723

lag3 dlpinc -0.0039 0.0001 -0.291 0.0880*** 0.1601

-0.0079 -0.0241 -0.3858 -0.0259 -0.3231

lag3 dlperm 0.0071*** 0.0007 -0.1013 0.0074*** -0.1401***

-0.0006 -0.0037 -0.0726 -0.0017 -0.0281

lag3 dlrhpi 0.0567*** -0.0358 1.6650*** 0.0283 -0.9879*

-0.0061 -0.0267 -0.4689 -0.03 -0.4023

lag3 lfcl -0.0005 -0.0027 0.0495 0.0009 0.0465

-0.0006 -0.0017 -0.0307 -0.0017 -0.0323

lag4 dlemp -0.1659*** -0.6371*** -8.8992*** 0.127 1.5232

-0.0307 -0.0897 -1.6458 -0.0928 -0.8366

lag4 dlpinc 0.0241* -0.0861** 0.0912 -0.0369 0.8381*

-0.0094 -0.0281 -0.6306 -0.0308 -0.4101

lag4 dlperm 0.0080*** -0.0028 0.2958*** 0.0002 -0.2056***

-0.0008 -0.003 -0.039 -0.0017 -0.0403

lag4 dlrhpi 0.0364*** 0.0595 0.6623 -0.0741* -1.1314**

-0.011 -0.0323 -0.5466 -0.0291 -0.4088

lag4 lfcl -0.0002 -0.0036 -0.0136 0.0065** 0.1143***

-0.0005 -0.002 -0.0257 -0.0021 -0.0274

lag5 dlemp -0.0425 0.0962 0.5879 -0.2367*** -1.1427

-0.0266 -0.1338 -1.1512 -0.0634 -1.2265

lag5 dlpinc 0.0053 -0.0572* 0.4997 0.0029 0.6269*

-0.0078 -0.0274 -0.3056 -0.0207 -0.3024

lag5 dlperm 0.0059*** -0.0002 0.1127 -0.0071** -0.1334**

-0.0008 -0.0027 -0.0672 -0.0026 -0.0417

lag5 dlrhpi 0.0287*** 0.0063 -0.9547*** 0.0544* -0.5745

-0.0073 -0.0345 -0.2618 -0.0251 -0.3537

lag5 lfcl 0.0007 0.0056** 0.0292 0.0081*** 0.0129

-0.0006 -0.0019 -0.0295 -0.0019 -0.0233

lag6 dlemp -0.0188 -0.1076 2.3433 0.0153 -0.7122

-0.0306 -0.0928 -1.232 -0.0898 -1.0905

lag6 dlpinc 0.0215** -0.0841** 0.5249 0.0470* -0.9804***

-0.0083 -0.0274 -0.3642 -0.0209 -0.2613

lag6 dlperm 0.0056*** 0.003 0.0653 -0.0113*** -0.1385**

-0.0007 -0.0026 -0.0429 -0.0034 -0.043
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lag6 dlrhpi 0.0375*** 0.1509*** -2.5350*** 0.0585* -0.0126

-0.0103 -0.0291 -0.2382 -0.0259 -0.4082

lag6 lfcl 0.0002 0.0011 0.0038 -0.0090*** 0.0254

-0.0006 -0.0021 -0.0216 -0.0019 -0.025

lag7 dlemp -0.0727** -0.3248** 0.7768 0.3918*** -0.0973

-0.0261 -0.1087 -1.0915 -0.1023 -1.094

lag7 dlpinc -0.0133 -0.0981*** 0.45 -0.0197 -0.3514

-0.0095 -0.0256 -0.3698 -0.0231 -0.5115

lag7 dlperm 0.0027** -0.003 0.028 -0.0039 -0.1142**

-0.0008 -0.0027 -0.0457 -0.003 -0.0412

lag7 dlrhpi -0.0525*** -0.0471* -1.5671** -0.0003 1.4592***

-0.0074 -0.0232 -0.5933 -0.0234 -0.32

lag7 lfcl 0.0008 0.002 0.0503* -0.0002 -0.0627

-0.0006 -0.0021 -0.0245 -0.0014 -0.0361

lag8 dlemp -0.1180*** 0.1818* -2.9672*** 0.4247*** 2.4385

-0.0329 -0.0763 -0.874 -0.0634 -1.432

lag8 dlpinc 0.0141 -0.0248 0.0254 -0.1410*** -0.6935*

-0.0085 -0.0298 -0.3497 -0.0221 -0.2887

lag8 dlperm 0.0046*** 0.0142*** 0.1649*** -0.0015 -0.1035**

-0.0011 -0.0026 -0.0322 -0.0025 -0.0371

lag8 dlrhpi 0.0115 0.048 -0.1634 0.0565** 1.0628***

-0.0071 -0.0279 -0.3353 -0.0207 -0.2928

lag8 lfcl 0.0005 0.0006 -0.0314 0.0057*** 0.0337

-0.0004 -0.0021 -0.0269 -0.0016 -0.0258

lag9 dlemp -0.0161 -0.1409 -0.7629 0.0627 1.7948

-0.0247 -0.0798 -0.8083 -0.0601 -1.2654

lag9 dlpinc 0.0059 0.0827** 0.1948 0.0285 0.5078

-0.0093 -0.0254 -0.3749 -0.0201 -0.2724

lag9 dlperm 0.0051*** 0.0187*** 0.1836*** -0.0056* -0.0873**

-0.0011 -0.0026 -0.0281 -0.0027 -0.0291

lag9 dlrhpi -0.0272*** 0.1408*** -0.8998* -0.0575** -0.6910*

-0.008 -0.0271 -0.3763 -0.0201 -0.3089

lag9 lfcl -0.0004 0.0059** -0.0564 0.0050* 0.0419

-0.0007 -0.002 -0.0584 -0.0021 -0.0265

lag10 dlemp 0.0495 0.1143 1.2114 -0.1697** -3.2371***

-0.027 -0.151 -1.3497 -0.0638 -0.9408

lag10 dlpinc 0.0223*** -0.025 1.1664*** -0.1032*** -0.2892
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-0.0064 -0.0205 -0.2927 -0.0208 -0.2092

lag10 dlperm 0.0051*** 0.0174*** 0.0666* -0.0088* -0.0481

-0.0008 -0.0027 -0.0311 -0.0045 -0.0294

lag10 dlrhpi 0.0132 -0.0354 1.7553*** -0.0167 -0.6371

-0.0076 -0.0213 -0.4866 -0.0259 -0.3593

lag10 lfcl 0.0003 -0.0102*** 0.0826** -0.0029 0.0102

-0.0007 -0.0018 -0.0311 -0.0021 -0.0257

lag11 dlemp -0.0448* -0.3182** -3.7948*** 0.3718*** 3.7532***

-0.0222 -0.1032 -0.807 -0.054 -0.9046

lag11 dlpinc 0.0012 -0.0724** 0.2399 0.0562** -0.5252*

-0.0066 -0.0259 -0.1889 -0.0191 -0.2459

lag11 dlperm 0.0060*** 0.0152*** 0.0826** -0.0103** -0.038

-0.0007 -0.0031 -0.0304 -0.0036 -0.0263

lag11 dlrhpi 0.0192* -0.1035*** 0.7591 0.0182 0.9341**

-0.0076 -0.0275 -0.4547 -0.0277 -0.3198

lag11 lfcl 0.0001 0.0054* 0.0102 0.0044* -0.0826***

-0.0005 -0.0022 -0.0269 -0.0021 -0.0195

lag12 dlemp -0.1138*** -0.037 -3.3337* -0.1767* 0.8647

-0.0179 -0.0753 -1.3842 -0.088 -0.8378

lag12 dlpinc 0.0051 -0.0594** -0.0262 -0.0057 -0.8895**

-0.008 -0.0196 -0.4236 -0.0179 -0.2929

lag12 dlperm 0.0012* 0.0006 0.1154* -0.0026 -0.0323

-0.0005 -0.0018 -0.0544 -0.0019 -0.0263

lag12 dlrhpi 0.0222*** 0.0122 1.6581*** -0.1344*** 0.7040*

-0.0054 -0.0209 -0.4859 -0.0282 -0.2822

lag12 lfcl -0.0010* -0.0091*** -0.0017 -0.0014 0.0823***

-0.0005 -0.0017 -0.0213 -0.0014 -0.0232

Transformation: Forward orthogonal deviations

Group variable: fipn

Time variable: yq

Number of observations = 1920

Number of groups = 48

Obs per group: min = 40

Obs per group: avg = 40

Obs per group: max = 40

Number of instruments = 575
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p < 0.001, p < 0.01, p < 0.05

Instruments for equation

Standard

GMM-type

Dependent vars: L(2,24))

Collapse = TRUE

Hansen test of overid. restrictions: chi2(275) = 8.22 Prob > chi2 = 1

(Robust, but weakened by many instruments.)
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